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Abstract Minimally invasive surgery, including laparoscopic and thoracoscopic procedures, benefits patients in
terms of improved postoperative outcomes and short recovery time. The challenges in hand–eye coordination and
manipulation dexterity during the aforementioned procedures have inspired an enormous wave of developments
on surgical robotic systems to assist keyhole and endoscopic procedures in the past decades. This paper presents a
systematic review of the state-of-the-art systems, picturing a detailed landscape of the system configurations,
actuation schemes, and control approaches of the existing surgical robotic systems for keyhole and endoscopic
procedures. The development challenges and future perspectives are discussed in depth to point out the need for
new enabling technologies and inspire future researches.
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Introduction

Keyhole surgery (e.g., laparoscopic and thoracoscopic
procedures) has been widely adopted due to its advantages,
such as low postoperative complication rates, less pain,
short recovery time, and excellent cosmesis [1,2].
Manipulation challenges in these procedures, including
limited visual perception, reduced distal dexterity, reversed
hand–eye coordination, and hindered haptic sensing, have
inspired a vast wave of developments on surgical robotic
systems to improve their assistance and obtain superhuman
capabilities [3–5].
Robotic systems for keyhole and endoscopic procedures

usually consist of a patient-side cart and a surgeon console
(Fig. 1). As presented in the “Configuration and actuation
of the patient-side cart” section, the patient-side cart often
involves a few surgical manipulators that maneuver a
laparoscope (or a thoracoscope) and two to three surgical
instruments. A laparoscope and thoracoscope are the same
in their composition. During a procedure, a laparoscope is
inserted into the abdomen, whereas a thoracoscope is
inserted into the thorax. Surgical manipulators can have

various forms and actuation schemes. Given that the
control scheme of surgical robotic systems is mainly
teleoperation, the surgeon console primarily consists of a
2D/3D display, a pair of master devices, and a touchscreen/
keyboard with a few pedals for user inputs. The system
sometimes includes a device cart for additional display,
electrical surgical equipment, and data processing compu-
ters serving as an information hub during surgery.
Surgeries other than keyhole and endoscopic procedures

utilize different treatment techniques, which in turn lead to
surgical robotic systems with different characteristics. For
example, orthopedic and neurosurgical robots emphasize
on accurate registration and constrained intraoperative path
planning [6,7], whereas robotic percutaneous interven-
tional procedures focus on instrument compactness (e.g.,
via the use of concentric tubes [8,9]) and magnetic
resonance imaging compatibility [10,11].
This paper presents a comprehensive review of the state-

of-the-art surgical robotic systems for laparoscopic,
thoracoscopic, and endoscopic procedures. The search
methodology is reported in the “Search methodology”
section. The system configurations, actuation schemes, and
design considerations are analyzed in the “Configuration
and actuation of the patient-side cart” section, and
additional sensors in robotic surgery for haptic sensation
and visual perception are discussed in the “Additional
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sensors in robotic surgery” section. The control
approaches, including teleoperation, surgical automation,
and system autonomy, are elaborated in the “Control
approaches” section. Future developments and perspec-
tives are discussed in the “Challenges and future
perspectives” section to inspire future studies. The
conclusion is provided in the “Conclusions” section.
Existing survey papers either span too broadly or only

focus on a specific topic. For example, survey papers
[3,5,12] cover a wide spectrum of advancements in
surgical robotics, including orthopedics, neurosurgery,
laparoscopy, catheterization, and percutaneous procedures.
These papers fail to systematically introduce the state-of-
the-art achievements of surgical robotic systems for
keyhole and endoscopic procedures. On the other hand,
review papers (e.g., References [6,7,11,13,14]) either focus
on particular applications (e.g., digestive procedures,
arthroplasty, neurosurgery, and urology) or design
approaches (e.g., via the use of continuum mechanisms).
Surgical robotic systems for keyhole and endoscopic
procedures share some common characteristics, such as
dual-arm manipulation, visual guidance, and teleoperation.
This review paper attempts to help readers form a
systematic and comprehensive perception about the state-
of-the-art achievements such that future studies can be
planned beyond the achievements.

Search methodology

This literature review focuses on the enabling technologies
and system integrations of surgical robots for keyhole and
endoscopic procedures. The searches were performed on
Thomson Reuters Web of Science Core Collection and
IEEE Xplore to find relevant literatures in English. The
searches in Thomson Reuters Web of Science Core
Collection were specified in the areas of robotics and

engineering using the advanced search option, whereas
those in the IEEE database were conducted using the free-
text protocol. The search terms applied are listed in Table 1
for each individual subsection as these subsections are
relatively standalone. Literatures with at least five average
annual citations within the first 100 most-cited papers were
identified. Additional relevant records were included from
the authors’ literature library.
The authors reviewed the abstracts of the identified

literatures to exclude records in irrelevant topics (e.g.,
orthopedics, vascular intervention, or neurology), technol-
ogies for manual tool designs, surgical platform descrip-
tions with no or little implementation details, clinical
reports with no or little engineering details, and results with
limited practical significance. Considering that this review
does not intend to exhaustively include all relevant papers,
sometimes only representative articles and milestone
works (e.g., one or two most cited papers) were included.
All the included literatures were then presented according
to the structure of this paper. This selection process was
based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) criteria and
followed the PRISMA flowchart in Fig. 2 for each
subsection. The applied search terms and statistics for
each subsection are summarized in Table 1. A total of 219
papers were included in the “Configuration and actuation
of the patient-side cart,” “Additional sensors in robotic
surgery,” and “Control approaches” sections in this review.

Configuration and actuation of the
patient-side cart

A patient-side cart often consists of a few surgical
manipulators. As shown in Fig. 3A, the surgical manip-
ulators maneuver a laparoscope (or a thoracoscope) and
two to three straight surgical instruments with distal wrists
through a few incisions made on the abdominal or thoracic
wall to visualize the surgical site and perform treatments.
The distal wrists integrated in the surgical instruments are
mainly used to increase the distal dexterity (i.e., the ability
of orienting the surgical end effector as desired).
The paradigm in Fig. 3A involves a few skin incisions,

and it is referred to as a multi-port procedure. In this
procedure, the surgical manipulators shall realize remote-
center-of-motion (RCM) movements or multiple degree-
of-freedom (DoF) intracorporeal motions. These manip-
ulators with different forms and actuation schemes are
discussed in the “RCM movements” and “Intracorporeal
movements” sections, respectively.
The desire of further reducing surgical invasiveness

leads to the proposal of single-port procedures [15] and
natural orifice transluminal endoscopic surgery (NOTES)
[16]. In single-port procedures, surgical instruments have
to be inserted into the abdomen through a single incision to

Fig. 1 Typical master–slave setup of a surgical robotic system for
keyhole and endoscopic procedures.
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Fig. 2 PRISMA flow chart for the searches regarding each subsection.

Table 1 Statistics of the PRISMA flowchart for the applied search terms
Section Search terms N1 N2 N3 R1 R2 S1 S2 S3 S4

Systems for
multi-port
procedures

� Surgical robot AND minimally invasive surgery
� Remote-center-of-motion AND minimally invasive

surgery
� Robotic laparoscopy surgical instrument OR robotic

laparoscopy surgical manipulator

151 67 36 4 184 197 233 229 45

Systems for
single-port
procedures

� Robotic single-port surgery OR robotic single-site
surgery

70 9 14 1 75 78 90 89 16

Systems for
endoscopic
and NOTES
procedures

� Robotic surgery AND natural orifice 64 55 13 1 98 102 112 111 16

Force sensing � Surgical force sensing OR surgical force feedback
� Sensor integration AND surgical instrument

92 55 14 3 121 130 143 140 20

Supplementary
visual
modality

� Endoscopic surface reconstruction
� Robotic surgery fluorescence
� Multispectral imaging surgery OR hyperspectral

imaging surgery
� Robotic endomicroscopy

143 14 24 0 134 148 172 172 38

Teleoperation � Haptic device
� Teleoperation control architecture
� Robotic surgery shared control OR robotic surgery

virtual fixture

120 26 14 1 104 125 139 138 34

System
autonomy and
surgical
automation

� Robotic surgery autonomy OR medical robot
autonomy

� Robotic surgery instrument tracking OR robotic
surgery instrument segmentation

� Endoscopic image segmentation OR endoscopic organ
tracking

� Surgical task segmentation
� Autonomous robotic surgery

200 42 26 0 202 232 258 258 56

Total inclusion in the “Configuration and actuation of the patient-side cart,” “Additional sensors in robotic surgery,” and “Control approaches”
sections

219
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access the surgical site. It is challenging for surgeons to
become proficient in crossed hand–eye coordination; thus,
robotic assistance is needed. The inserted instruments can
be arranged in two ways: the X configuration as shown in
Fig. 3B and the Y configuration as shown in Fig. 3C. In the
X configuration, the technical approaches from the multi-
port surgical system may be directly applied, but collisions
between the surgical manipulators and the instruments
should be carefully avoided as the instruments’ workspace
is mutually limited. In the Y configuration, the surgical
instruments shall be unfolded to form a working pose.
Collisions are minimized, but the instruments’ payload
capability is of concern because the external load has a
much longer moment arm compared with the moment arm
of the actuation force from the cable inside the instrument’s
stem. The existing state-of-the-art systems for single-port
procedures are summarized in the “Systems for single-port
procedures” section.
NOTES procedures access a surgical site via confined

and curved natural orifices and can potentially avoid the
use of any skin incision. However, the difficulty in
instrumentation limits the application of NOTES proce-
dures. Representative endoscopic and NOTES systems are
summarized in the “Systems for endoscopic and NOTES
procedures” section.

Systems for multi-port procedures

Surgical instruments are individually inserted through the
incisions in the abdominal or thoracic wall during a multi-
port procedure. They can either have a straight stick-like
form with a distal wrist or a multi-DoF structure.

In the former case, the instruments shall be manipulated
by the patient-side manipulators for RCM movements,
where the instrument is pivoted with respect to the skin
incision in order to avoid tearing the abdominal wall. Then,
the instrument is given four DoFs by the extracorporeal
manipulator, including the pitch and yaw DoFs, as well as
the translation and rotation along and about the instru-
ment’s axis. The forms and structures of RCM manip-
ulators are reviewed in the “RCM movements” section. A
distal wrist is often integrated to enhance the distal
dexterity (i.e., increase the number of DoFs). Various
wrist designs are reported in the “Wrist design and
actuation” section.
A number of designs on multi-DoF surgical instruments

are reviewed in the “Intracorporeal movements” section.
These instruments realize dexterous intracorporeal move-
ments without using RCM manipulators.

RCM movements

In the multi-port procedure, a stick-like instrument requires
RCM movements: it can be tilted in the pitch and yaw
directions with respect to the skin incision. These RCM
motions are realized by the patient-side surgical manip-
ulators, either by using an RCM mechanism or via
controlling a manipulator’s multiple joints in a coordinated
manner (i.e., programmable RCM movements). Several
RCM mechanisms are shown in Fig. 4.
In the parallelogram-based RCM mechanism in Fig. 4A

with the representative implementations in the da Vinci
system [17] and the REVO-I system [18], the rotation from
the actuator at position A is transmitted to position O via

Fig. 3 Patient-side manipulators: (A) typical configuration for multi-port procedures, (B) X configuration for single-port procedures, and (C) Y
configuration for single-port or endoscopic procedures.
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the two parallelograms. The second actuator at position B
enables a rotation about the BO axis. To reduce the mass of
the RCM mechanisms so as to ease the dynamic control of
the instrument’s movements, timing belts [19] and cables
[20,21] are used to realize equivalent parallelograms for
RCM movements as shown in Fig. 4B. However, cable
elongation under loads can be challenging for the
manipulator accuracy. To increase the structural rigidity,
a parallel structure is used as shown in Fig. 4C, where two
prismatic actuators are used to provide the 2-DoF rotation
about the RCM point [22].
The serially connected spherical linkage as shown in

Fig. 4D can also be used [23,24]. To further increase the
stiffness, a parallel spherical linkage was proposed as
shown in Fig. 4E [25]. The design in Fig. 4E realizes 3-
DoF motions, including a rotation about the instrument
axis. This axial rotation is usually not realized by the RCM
mechanisms, for example, the ones in Fig. 4A–4D and 4F.
RCM mechanisms based on goniometer arc tracks are

also possible candidates [26,27]. However, the arc length is
proportional to the angular motion range, and large motion
ranges lead to bulky designs and inconvenience in patient-
side deployment.
Programmable RCM movements are realized via

synchronized control of a manipulator’s multiple joints.
The manipulators can have either serial [28–31], parallel
[32–34], or hybrid [35,36] structures.
The control for programmable RCM movements can be

realized using a geometrical approach [28] or instanta-
neous kinematics. The latter mainly includes the use of (1)
null space projection [31,37,38] or (2) extended Jacobian
methods [36,39–41]. Dynamic control methods that
minimize the contact force between the instrument and
the trocar can also be used [42,43]. Compared with RCM

mechanisms, manipulators with programmable RCM
movements provide convenience during the preoperative
docking of the instruments. However, RCM mechanisms
are considered safer and more reliable due to the
mechanically constrained movements.
Besides the two aforementioned RCM approaches,

passive RCM technique can also be adopted [44–46],
wherein the extracorporeal manipulator is underactuated
and the incision point helps to determine the pose of the
inserted instrument. Passive RCM technique is safer, but
the instrument’s accuracy is often affected by the
compliance from the incision port in the abdominal wall
under the pneumoperitoneum.

Wrist design and actuation

While the RCM movements of an instrument are realized
by an extracorporeal manipulator, a wrist is often
integrated at the distal end for dexterity enhancement
such that suturing and knot tying can be more conveniently
conducted.
Many wrists adopt serial-structured designs. The desire

for design compactness and proximal actuator arrangement
often leads to the choice of cable actuation [17,24,47,48],
including the famous EndoWrist design shown in Fig. 5A.
Shape memory alloy actuation is also a possible approach
to realize compact wrist designs [49,50]. However, the
motion responses are relatively slow. For example, the
thermal exchange took approximately 8 s to complete in
Reference [49].
To enhance the wrist’s structural rigidity, serial and

parallel linkages are also proposed. Representative exam-
ples using serially connected coupler actuation [51] and a
3-PRS structure [52] are shown in Fig. 5B and Fig. 5C,

Fig. 4 RCM mechanisms using (A) parallelograms [17,18], (B) equivalent parallelograms with cable transmission [20,21], (C) parallelograms with
a parallel actuation [22], (D) serial spherical linkage [23,24], (E) parallel spherical linkage [25], and (F) goniometer arc tracks [26,27].
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respectively. However, these linkage-actuated wrists may
have limited motion ranges. For example, motion ranges of
the pitch and yaw joints are only � 40° in Reference [51],
whereas the parallel-linkage design in Reference [52] has a
pitch motion from – 50° to 70° and a yaw motion
of � 64°. In comparison, the EndoWrist in the da Vinci
system has a pitch motion range of � 70° and a yaw
motion range of � 90° [17].
The pulleys used in the cable-driven wrists and the

pinned joints in the linkage-driven wrists have limited
potentials in further miniaturization. Continuum mechan-
isms, which are coined in Reference [53] and transmit
forces and motions via the structures’ continuous deforma-
tions, have been explored. Examples of continuum wrists
for multi-port procedures using a 2-DoF bending segment
are shown in Figs. 5D [27] and 5E [54], featuring a multi-
backbone design and a concentric-tube design, respec-
tively.
The structural and modeling simplicity makes the design

popular in many surgical robotic systems for single-port
and NOTES applications [55–57]. To further improve the
structural simplicity, a deformable wrist design was
recently proposed as shown in Fig. 5E [58]. The rigidity
is also enhanced as elastic strips were used to replace
elastic wires. In these continuum wrists, fatigue may seem
a problem due to the repetitive bending. However,
superelastic nitinol can easily undergo 105 cycles of
deformation [59], which fulfill the requirement for a multi-
use instrument.

Intracorporeal movements

Besides stick-like instruments with an RCM manipulator,
the patient-side surgical manipulator can also be designed
to directly realize multi-DoF intracorporeal movements. In
this case, only a lockable stand is required to hold these
dexterous surgical manipulators to the entry ports of a
patient’s abdomen. Then, the manipulators will no longer
undergo RCM movements (e.g., swinging back and forth),
eliminating the risks of mutual collisions of these bedside
manipulators.
Surgical manipulators with multiple intracorporeal DoFs

can have either articulated, continuum, or hybrid struc-
tures, as shown in Fig. 6.
In articulated designs, cable actuation [47] or embedded

motors [28,48] can be used. However, the use of embedded
motors often results in bulky designs, and cable actuation
is affected by tension keeping. Thus, the continuum
structure has recently become a popular choice, where
cable tension keeping can be eased by the elastic structure
[54,60], or avoided in multi-elastic-backbone designs
[61,62]. A hybrid design using a 2-DoF inverted dual
continuum mechanism for intracorporeal translation and a
2-DoF EndoWrist for orientation has recently been
proposed; this design combines the advantages of the
articulated wrist that provides enhanced dexterity in
confined spaces and the dual continuum mechanism that
provides enhanced payload and reliability [63].
Through the use of intracorporeal manipulators, the

Fig. 5 Various wrist designs. (A) Cable-driven EndoWrist, reprinted with permission from John Wiley and Sons [21], (B) serial-linkage-actuated
design, reprinted with permission from IEEE [51], (C) parallel-linkage-actuated design, reprinted with permission from IEEE [52], (D) bending wrist,
reprinted with permission from SAGE [27], (E) concentric-tube wrist (rightmost) compared with EndoWrist (leftmost), reprinted with permission
from IEEE [54], and (F) deformable wrist, reprinted with permission from IEEE [58].
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possibility of collision among the extracorporeal RCM
manipulators is minimized. However, an intracorporeal
manipulator should be fully inserted to deploy all its joints
for multi-DoF movements. Its dexterity is hence limited at
regions close to the abdominal wall. For wider clinical
applications, most robotic systems for multi-port proce-
dures still adopt the approach with RCM manipulators.

Systems for single-port procedures

General laparoscopic and thoracoscopic single-port proce-
dures were introduced for reducing surgical invasiveness at
the cost of increased manual manipulation difficulties and
instrumentation complexity. Robotic assistance was intro-
duced, and the adopted actuation schemes include cable/
tendon actuation, embedded motorization, linkage-based
transmission, and continuum mechanisms.
Cable actuation was adopted in the X and Y configura-

tions, as shown in Fig. 3. The examples adopting the X
configuration include the da Vinci Single-Site video
endoscopic single-port access (VeSPA) surgical platform
[64] and the Samsung single-incision surgical system [65].
To avoid manipulator collisions and instrument inter-
ference, many systems adopted the Y configuration,
including the da Vinci SP system [56], the Single Port
Orifice Robotic Technology (SPORT) system [66], the
SurgiBot system [67], and the single-port system with a
flexible access tube [68]. Some examples are shown in Fig.
7A. Cable/tendon actuation is a relatively mature techni-
que. Ideally, pulleys should be applied at the manipulator’s
joints to improve reliability and transmission smoothness.

However, the pulley size becomes a major limit for further
miniaturization of a multi-joint instrument. For this reason,
some designs do not use pulleys and let the actuation
cables slide against the rounded edges of the structural
components. Besides cable wear, the introduced friction
can cause actuation hysteresis and affect movement
accuracy. In all the designs, the actuation cables shall be
arranged distant enough from the joint axis to generate
enough forces at the instrument’s distal end. Thus, most
existing systems have an access tube diameter larger than
25 mm.
The following systems that use embedded miniature

motors adopted the Y configuration: Single-Port lapaRo-
scopy bImaNual robot (SPRINT) system (Fig. 7B) [69],
Robot-Assisted Surgical Device (RASD) system (Virtual
Incision Corporation, Lincoln, Nebraska, USA), the
Single-Incision in vivo Surgical Robot (SISR) system
[70], and the NISI single-port robotic system [71]. The use
of embedded motors inside the manipulator provides
convenient modular joint designs. However, a sufficient
motor power rating leads to a relatively large manipulator
diameter. Most existing surgical systems adopting this
approach need an access port larger than 30 mm in
diameter. The sterilizability of the embedded motors may
also increase the system costs.
Linkage can also be used for manipulator design in a

single-port system. Representative examples include the
single-port surgery (SPS) system (Fig. 7C) [72] and
PLAte-spring mechanism-based LAparoscopic Surgical
robot (PLAS) system [73]. The linkage-based manipula-
tors generate relatively good payload performance. How-
ever, the inherent difficulties in designing multi-DoF
spatial linkages, such as transmission and interference
avoidance, often lead to limited instrument distal dexterity.
For example, the maximal joint angle is only 45° in the
SPS system [72]. In addition, miniaturization of the
manipulator may be limited by the size of the structural
hinges. Most linkage-based systems require an incision
diameter larger than 25 mm [72,73].
Continuum mechanisms transmit force and movement

via structural deformation. Hence, all structural members
undertake dual roles of structure and transmission. Using
continuum mechanism to design a single-port surgical
robot can therefore achieve better design compactness.
Examples using this design include the Insertable Robotic
Effector Platform (IREP) system with a 15 mm stem
diameter [74] and the SJTU Unfoldable Robotic System
(SURS) with a 12 mm stem diameter (Fig. 7D) [57]. In
addition, the dual continuum mechanism proposed in
Reference [57] introduces [75,76] actuation modularity
and substantially increases the payload capability of the
continuum surgical manipulator, making it an appealing
candidate for future surgical robotic products. In the

Fig. 6 (A) 5-DoF articulated surgical manipulator, reprinted with
permission from Springer Nature [28], (B) 4-DoF continuum surgical
manipulator, reprinted with permission from IEEE [61], and (C) 6-DoF
continuum-articulated surgical manipulator, reprinted with permission
from IEEE [63].
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clinical scenario where only low payload capability is
needed (e.g., performing ablation), a cardiothoracic
endoscopic soft surgical robot was proposed [77].

Systems for endoscopic and NOTES procedures

The delivery of surgical tools through narrow and curved
natural orifices creates strict constraints on the tool’s distal
dexterity and payload capability [78]. The application of
endoscopic and NOTES procedures is hence limited due to
the challenges in tool instrumentation [79]. Existing
systems usually adopt the designs with articulated or
continuum structures.
In articulated designs, structural compactness is of

primary consideration. Besides cable actuation [75,76],
surgical manipulators can also use embedded miniature
motors [80–83]. The use of embedded miniature motors
leads to beneficial design modularity and even system
reconfigurability. These robots can move away from the
cavity entrance and are typically magnetically anchored on
the abdominal wall from an outside dock. However, further
miniaturization of such robots is challenging due to various
integrated actuation components.
Continuum robots, on the other hand, incorporate elastic

structures and tendon/backbone actuation schemes, lead-
ing to a compact and flexible design [55,84–90]. Two
representative examples are shown in Fig. 8C. However,
due to the inherent compliance of continuum structures, the
payload capability is often deteriorated with an increased
total length of the arm.

Additional sensors in robotic surgery

To further enhance the safety and functionality of a
surgical robotic system, additional sensors were integrated.
Two major categories are primarily involved: force sensing
and supplementary visual modalities.

Force sensing

Force sensing in surgical robotic systems can generate
faithful force feedback to the operating surgeon and can
potentially help increase the safety of typical surgical tasks,
including tissue manipulation [91] and blunt dissection
[92].
Force sensing during surgery mainly include two types:

(1) measuring the tissue gripping force and (2) measuring
the interaction force with environment. Sensing
approaches include extrinsic force sensing and intrinsic
force sensing. Extrinsic force sensing integrates a sensing
element at the location of contact and directly measures the
force, whereas intrinsic force sensing, proposed in

Fig. 8 Representative systems for endoscopic and NOTES procedures.
(A1) Articulated cable-driven design, reprinted with permission from
John Wiley and Sons [76], (B1) reconfigurable design with embedded
motors, reprinted with permission from IEEE [81], (B2) embedded-
motor-actuated design, reprinted with permission from Springer Nature
[80], and (C1 and C2) STRAS and ViaCath systems using continuum
surgical manipulators, reprinted with permissions from John Wiley and
Sons and IEEE [55,89].

Fig. 7 (A1) da Vinci Single-Site VeSPA surgical platform, reprinted
with permission from John Wiley and Sons [64], (A2) da Vinci SP
surgical system, reprinted with permission from Elsevier [56], (A3)
Samsung surgical system, reprinted with permission from IEEE [65], (B)
SPRINT surgical system, reprinted with permission from Springer
Nature [69], (C) SPS surgical system, reprinted with permission from
John Wiley and Sons [72], and (D) SURS system, reprinted with
permission from IEEE [57].
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Reference [93], uses actuator-level information to calculate
the contact force, as shown in Fig. 9C. However, the
former may provide a more accurate result. The increased
complexity of sensor-integrated instruments may lead to
reduced reliability, providing challenges to sterilization
and higher costs.
Gripping force sensing using the extrinsic approach

includes the use of a strain gauge [94], polyvinylidene
difluoride (PVDF) elements [95], fiber Bragg grating
(FBG) [96], and capacitive sensing cells (Fig. 9A) [97].
Given that a gripping force is always actively applied, the
intrinsic sensing approach might be more suitable.
Representative examples include measuring the driving
shaft tensions [51], driving pulley strains [98], driving
pulley torques [99], and motor currents [100].
Interaction force sensing with environment adopting the

extrinsic approach includes the use of strain gauges
[101,102] with one design (Fig. 9B) [101], optical intensity
[103,104], FBG [105], and PVDF piezoelectric film [106].
On the other hand, intrinsic sensing is implemented by
measuring the backbone actuation forces [107], motor
currents [108], and actuation pulley strains [98]. Compared
with the extrinsic sensing approach, the intrinsic sensing
approach allows versatile extracorporeal sensor arrange-
ment, which enables structural simplification of the
inserted instruments. However, intrinsic force sensing
through actuation cables or motor currents is affected by
friction and moving inertia. Thus, the accuracy may be
limited.

Supplementary visual modality

Endoscopic imaging is the basic visual modality in keyhole
surgery, and it provides a direct view of the targeted
surgical site. Besides endoscopic imaging, other visual
modalities are often integrated to provide richer intracor-
poreal information at the anatomical, tissue, or cellular
levels to improve visualization and facilitate surgical
treatments.

Surface reconstruction

Surface reconstruction provides spatial information about
the tissue surface geometry, which can be used for depth
perception and surgical navigation [110,111]. Several
approaches can be used for 3D surface reconstruction of
a surgical scene intraoperatively, including the use of
stereoscopes [112–114] or structured lights [115–117].
However, the miniaturization can be challenging due to a
minimal requirement of a baseline distance [118].
The 3D shape of the environment can also be obtained

from the motion of a single endoscope, including the
Shape-from-Motion (SfM) [119] and Shape-from-Shading
(SfS) techniques [120]. In SfM, a 3D model template is
first constructed from multiple views of the tissue, and
tissue deformation is detected from the motions of the
point cloud. In SfS, the depth of each pixel is computed by
relating the pixel’s brightness to its normal surface
direction with a reflectance model. These techniques can
be readily applied with current laparoscopic hardware, but
the performances rely on the feature correspondence or the
validity of the reflectance model [118].
Simultaneous localization and mapping (SLAM),

which updates an environment map via a camera’s
view while tracking the camera’s location, has also been
utilized in surgical surface reconstruction [121,122].
SLAM is appealing in the surgical scene due to its real-
time capability even while using a standard laparoscope.
Recent works that addressed the challenges such as
tracking deformable tissues and robust feature matching
[123,124] have made SLAM even more promising
(Fig. 10A).

Fluorescence and spectral imaging

Near-infrared fluorescence (NIRF) imaging improves
contrasted views of specific surgical sites against surround-
ing tissues. Near-infrared light (700–900 nm) can travel
up to centimeters through tissues to reach the fluorescent
contrast agents, which have been developed for different
types of targets according to the absorption and
scattering properties of the tissue components [128].
The applications of NIRF include sentinel lymph-node
mapping, identification of vascular and biliary anatomy,

Fig. 9 (A) Gripper design with sensor integrated in the jaws, reprinted
with permission from IEEE [97], (B) Stewart type sensor embedded in
the wrist, reprinted with permission from John Wiley and Sons [109],
and (C) working principle of the intrinsic force sensing.
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and assessment of organ and tissue perfusion [125]
(Fig. 10B1). Fluorescence is integrated into the da Vinci
surgical system and was found to be highly useful [129].
Specific surgical procedures employing NIRF include
partial nephrectomy [130], cholecystectomy [131], thy-
mectomy [132], lymphadenectomy [133], and intestinal
anastomosis [134]. Another application is to use NIRF as a
positioning marker. For example, supervised autonomous
suturing was performed on soft tissues under the guidance
of NIRF markers [135].
Spectral imaging acquires multiple images of the tissue

at different wavelengths to reveal tissue characteristics.
Multispectral imaging and hyperspectral imaging differ
from each other in spectral resolution, band quantity, band
width, and band contiguousness [136]. Multispectral
images are taken in a time span of several hundred
milliseconds, during which the tissue and the camera shall
remain steady with respect to each other, making it
challenging to apply in a surgical setting [137]. Deblurring
algorithms were proposed to improve multispectral images
affected by tissue/camera movements [138]. Hyperspectral
imaging was used to characterize oxygenation during
robotic partial nephrectomy [139]. Given that spectral
imaging better reveals the tissue-specific optical character-
istics compared with RGB imaging, it is also employed in
automated tissue classification [126,140], as shown in
Fig. 10B2.

Confocal endomicroscopy

Confocal endomicroscopy, which is an imaging technique
for increasing resolution via the use of a spatial pinhole to
reduce out-of-focus lights, enables in vivo histopathology
by providing cellular level information and serves as an
“optical biopsy.” The advantages of confocal endomicro-
scopy are evident: it provides high-resolution, real-time,
dynamic images of tissues in a noninvasive manner and
can be used to examine large areas during surgery. Probe-
based confocal laser endomicroscopy (pCLE) [141]
(Fig. 10C) is also promising due to its high-speed imaging,
mosaicing algorithms, and robotic instrument/probe con-
trol [142]. In particular, robot-assisted mosaicing
(i.e., stitching adjacent image frames) has been widely
investigated for large area tissue scanning using pCLE
[127,143], whereas force feedback [144] and visual
servoing [145] are used to ensure a stable and robust
tissue contact. Projecting of the pCLE images back to the
endoscopic footage was made possible using the tactile-
based 3D surface reconstruction [146] and SLAM [147],
allowing potential lesions to be conveniently targeted for
subsequent treatments.

Control approaches

Most existing robotic systems for keyhole and endoscopic
procedures utilize a master–slave teleoperation paradigm
[148], where the patient-side manipulators are on the slave
side and the surgeon console is on the master side. The
movements of the patient-side slave manipulators shall
follow the trajectory commands from the master (usually
haptic) devices. The advances in teleoperation are reported
in the “Teleoperation” section. However, teleoperation has
zero level of autonomy in a robot-assisted surgery
[149,150]. Exploitations of autonomy on higher levels
can be of greater assistance to surgeons, and the state-of-
the-art progresses are summarized in the “System
autonomy and surgical automation” section.

Teleoperation

Although the early studies on teleoperation for laparoscopy
were conducted over long physical distances [151], in
practice, the master and slave sides usually are in the same
room. Currently, teleoperation can enhance surgeons’
capabilities, such as hand tremor elimination, motion
scaling, and continued inputs for fully exploiting super-
human tool dexterity [3]. A review on master haptic
devices is presented in the “Haptic devices” section,
whereas the controls involved in teleoperation are
discussed in the “Bilateral control” and “Shared control”
sections.

Fig. 10 Various visual modalities. (A) Abdomen tissue 3D reconstruc-
tion using MIS-SLAM, reprinted with permission from IEEE [124], (B1)
comparison between the endoscopic images under white light and NIRF
showing the perfusion of the intestinal loop, reprinted with permission
from John Wiley and Sons [125], (B2) RGB image of the larynx and
cancerous tissue classification using the hyperspectral imaging data
[126], and (C) pCLE mosaic image using spiral scan on ex vivo beef liver,
reprinted with permission from IEEE [127].
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Haptic devices

Haptic feedback includes cutaneous (tactile) and kines-
thetic (force) information [152], which can potentially
improve the performance of delicate surgical tasks that
involve interactions between the surgical manipulator and
the environment (e.g., suturing or dissection) [91,153].
Haptic feedback to operating surgeons is supported by
haptic devices, which generate kinesthetic interactions for
the surgeons to perceive the remote environment. Haptic
devices sense the positions and/or orientations and
generate forces and/or torques.
According to the capabilities of the sensing inputs and

the haptic (force/torque) outputs, haptic devices can be
divided into three categories as follows:
(1) 3-DoF inputs (usually positions) and 3-DoF outputs

(usually forces): Commercial products include the delta.3
and omega.3 devices (Force Dimension) and the Novint
Falcon (Novint Technologies). Research prototypes
include the SHaDe device [154] (orientation inputs and
torque outputs), joystick mechanism [155], and DELTA-R
device [156] (Fig. 11A).
(2) 6-DoF inputs (positions and orientations) and 3-DoF

outputs (usually forces): Commercial products include the
Touch and TouchX devices (3D Systems) and the omega.6
device (Force Dimension). Laparoscopic interface [157] is
one typical research prototype (Fig. 11B).
(3) 6-DoF inputs and multi-DoF outputs (five or six

force/torque components): Commercial products include
the delta.7 and sigma.7 devices (Force Dimension) and the
Phantom Premium (3D Systems). Research prototypes
include the haptic pen [158], VISHARD6 [159], PATHOS-
II [160], haptic cobot [161], modified DELTA-R device
[156], pinch–grasp haptic interface [162], VirtuaPower
device [163] (Fig. 11C), and CombX device [164].

Bilateral control

Two types of control architectures are commonly adopted

in surgical teleoperation: unilateral and bilateral control. In
unilateral control, the slave motions are directly specified
by the master. Unilateral control is an effective and
straightforward approach that has been widely implemen-
ted in robotic surgery systems (e.g., in the da Vinci
system).
The main drawback of unilateral control is the absence

of force feedback. Bilateral control, on the other hand,
refers to the control of master–slave systems with force/
position information exchange. The design considerations
for the bilateral controller are to maintain the stability and
transparency of the closed-loop system [165]. Studies have
shown that perfect transparency is not possible in practice
as it requires the exact knowledge of the dynamics of
master–slave system that transmits force and position in
both directions without communication delay [166]. The
ideally transparent system is marginally stable, and
increased stability robustness is achieved by reducing the
bandwidth of accurate transparency, causing a trade-off
between stability and transparency in the design of bilateral
controllers [167]. Due to the complexity of sensor
integration and control analysis, control architectures
with reduced number of channels for sensory information
exchange are commonly adopted. In telesurgery, the slave
is usually under position control, which leads to an
impedance type or a direct force feedback type imple-
mentation of the bilateral controller.
The impedance control (also referred to as the position-

error-based control [168]) is a sensor-less control archi-
tecture that reflects a force from the difference between the
desired and actual positions of the slave robot to the
operator. This force is an indication of the interaction
between the slave robot and the environment only when
the friction and inertia are low [152]. Therefore, this
method is difficult to be applied in detecting interactions
with soft tissue, and friction compensation is needed to
improve the transparency of such bilateral systems
[169,170].
Direct force feedback, on the other hand, requires the

measurement of the interaction forces between the slave
and the environment [171–173]. It provides better
performance in position and force tracking than position-
error-based control [174,175]. However, practical chal-
lenges are encountered in force sensor integration due to
miniaturization, sterilization, and biocompatibility issues.

Shared control

In shared control, the slave is teleoperated by the operator
under an active assistance of the robot. A typical
application of shared control in telesurgery is the use of
virtual fixture [176], which generates force and position
signals as assistances to improve safety and accuracy,
while the surgeon remains in control. Two types of virtual

Fig. 11 (A) The DELTA-R device with 3-DoF position inputs and 3-
DoF force outputs, reprinted with permission from IEEE [156], (B) the
laparoscopic interface with 6-DoF position–orientation inputs and 3-
DoF force outputs, reprinted with permission from IEEE [157], and (C)
the VirtualPoer device with 6-DoF position–orientation inputs and 6-
DoF force/torque outputs, reprinted with permission from IEEE [163].
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fixtures are commonly adopted: guidance virtual fixtures
and forbidden-region virtual fixtures [177]. For example,
virtual fixtures have been used to provide guidance to
target anatomy [178] and motion constraints on robot-
assisted suturing [179]. Virtual fixtures have also been
used for surgical training [180] and co-manipulation [181].
User studies show that virtual fixtures improve surgical
performances during procedures such as suturing, needle
passing, and knot tying [182,183].

System autonomy and surgical automation

The current development of artificial intelligence is far
from being capable to support autonomous surgery. Partial
surgical autonomy can benefit surgical treatments by
automating repetitive tasks and let surgeons concentrate
on critical operations [150].
The control architectures of teleoperated surgical

systems can be classified as direct/bilateral control, shared
control, and supervisory control depending on the degree
of user interaction. Yang et al. proposed a framework of
autonomy levels, in which medical robots have no
autonomy, assistance autonomy, task autonomy, condi-
tional autonomy, high autonomy, and full autonomy,
corresponding to autonomy level 0 to 5, respectively
[149]. A similar six-level scaling is proposed in Reference
[184], which was developed from the discussions and a
technical report of an ISO/IEC Joint Working Group.
Although supervised autonomy has been successfully

applied in some robot-assisted surgeries such as orthopedic
surgery and neurosurgery, the level of autonomy for
keyhole surgery remains low (mostly teleoperation). With
the growing number of surgical procedures with a massive
quantity of available surgical data, standardized autonomy
rating and classification are desired in order to guide the
development of future surgical robots [149,185].
Surgical robotic systems with a high level of autonomy,

as delineated by the above standards, are able to make
(some) decisions under the supervision of a surgeon. The
automation attempts are hindered by challenges in
acquiring information and executing tasks in surgical
environments with soft tissues or moving organs. Emer-
ging studies have presented technical progresses in these
aspects that potentially enable the development of next-
generation cognitive surgical systems [186]. In the rest of
this section, the state-of-the-art surgical autonomy for
keyhole surgeries will be reported.

Information acquisition

Visual modality provides a direct approach to the
intracorporeal scene, which generally includes organs,
tissues, and surgical instruments. Information acquisition
refers to the extraction of informative segments from the
scene and their interpretation as semantic or kinematic

data, based on which the robotic surgical system executes
surgical tasks autonomously.
Detecting the presences, determining the positions, and

tracking the trajectories of surgical instruments are of
importance not only in extending surgeons’ capabilities in
teleoperation, but also in better facilitating autonomous
surgery [187]. The presence detection approaches adopted
include color distinction [188], geometric feature matching
[189], color and texture features [190], and radiofrequency
identification [191]. Positioning and tracking methods can
be marker-based, for example, combining laser pointers
and optical markers [192] and using specially designed
black/white patterns [193]. Markerless approaches are also
possible, for example, relying on the end effector geometry
and online kinematic data for pose estimation [194,195].
Learning-based methods include a probabilistic condensa-
tion algorithm relying on the priori geometric knowledge
of the instruments [196], kinematics-combined rando-
mized trees [197,198], shape-dependent feature descriptor
for pose estimation [199], and deep-learning-based instru-
ment segmentation [200,201].
Surgeries involving soft tissues have not been performed

autonomously due to the lack of vision in tracking and
distinguishing tissues in dynamic surgical environments
[202]. Given that fluorescence imaging or multispectral
imaging increases system complexity and cost, autono-
mous segmentation or tracking of organs using general
endoscopic imaging is still actively investigated. In
methods that utilize preoperative priors [203,204], the
organs are usually segmented in the preoperative CT
model, and the registration of the model to endoscopic
images is performed to account for organs’ motion and
deformation. Other works used image processing
approaches or machine learning strategies without prior
information. The image processing approaches include
basic thresholding and merging [205], homogeneity and
hue [206], gradient-based methods [207], and optical flow
[208]. Segmentation based on machine learning has been
achieved using random forest [209], support vector
machines [210], and fully convolutional neural networks
[211]. This method is promising due to the increasing
amount of available laparoscopic data.
Another topic is the analysis of instrument motions

recorded from surgical procedures, which is also known as
surgical task segmentation. It is extensively used for
surgical skill assessment [212,213] or constructing finite
state machines for automation [214,215]. Early studies
have focused on supervised task segmentation [216–218],
where a set of predefined surgical motion sets with explicit
semantic sense is required. Given that laparoscopic
surgical gestures do not follow predefined patterns and
involve temporal variations, the supervised approaches
lack the acuity in detecting surgeon’s gestures. In addition,
manual annotation of the training data set is impractical
when the data become massive. Hence, recent studies often
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treat the surgical task segmentation in an unsupervised
fashion [219–221]. Improved robustness to looping (a.k.a.
failures and repetitions in surgical procedures) and noises
was reported based on evaluations on specific surgical
tasks [221] using unsupervised segmentation.

Autonomous planning and execution of surgical subtasks

Suturing and knot tying are two fundamental tasks in
minimally invasive surgery (MIS) due to their time
consumption and high risks of injuring the related
unstructured in vivo environment. The autonomy focusing
on these two tasks is indeed challenging considering the
thread’s flexibility, position, and tension; tissue deforma-
tions; and constrained workspace.
The first robotic suturing in MIS was investigated in

Reference [222]. EndoBot’s proposed autonomous robotic
suturing algorithms were based on observations of manual
suturing operations, which were divided into stitching,
creating a suture loop, developing a knot, and securing a
knot. To minimize the task uncertainty from the tissue
deformations and the pose of the suture needle, other path
planning approaches were subsequently proposed, includ-
ing relying on kinematic analysis and geometric modeling
of the stitching task [223], creating an analytical solution
from manual suturing [224], and sequential convex
programming [225].
To accommodate the uncertainty and adopt online

change, a few alternative approaches were proposed by
using (1) human guidance, where a laser pointer was
maneuvered by a surgeon to pinpoint the entry for an
automatic stitching under visual servoing [226]; (2)
fluorescent imaging, where near-infrared fluorescent
imaging was used to detect and track soft tissue
deformations and automatically compute stitch arrange-
ment [202,227]; and (3) tissue deformation modeling,
where a penetration-induced deformation matrix was
introduced to adaptively estimate suturing trajectories
[228].
On the other hand, learning-based approaches were

proposed for motion planning of surgical subtasks [150].
Examples include the RNN-based autonomous knot tying
using the EndoPAR robot [229], learning by demonstra-
tions and decomposing demonstrations into meaningful
primitives [230], apprenticeship learning under a variant of
iterative learning control [231], and non-rigid registration
mapping between the demonstration scene and the test
scene [232].
Besides suturing and knot tying, other autonomous

surgical subtasks were also attempted, including multi-
lateral debridement [233], multilateral cutting of 3D
viscoelastic and 2D orthotropic tissue phantoms [214],
electro-surgery [234], palpation [235], and blunt dissection

[236]. All these subtasks can be potentially fitted within the
framework for hierarchical subtask execution planning,
which was proposed in Reference [237]. Such an
integrated effort is expected to eventually bring all these
pilot autonomous functions into one working system.

Challenges and future perspectives

In multi-port surgical procedures, robotic assistance, which
had brought high-definition stereo imaging, enhanced
dexterity, and intuitive and fine control of instruments,
gradually gained acceptance across the world with its
applications in various surgical departments, including
general surgery, urology, cardiothoracic surgery, and
gynecology. Suitable technologies for imaging, system
design, and robotic manipulation in multi-port procedures
have also progressively arrived at consensus.
On the other hand, a movable vision module with

illumination and two to three surgical manipulators have to
be deployed to a surgical site via a straight or curved access
channel in single-port and NOTES/endoscopic procedures,
as shown in Fig. 3C. The clinical need for robotic
assistance in these procedures is even more apparent than
that for multi-port procedures. However, even though few
systems have received clinical clearance (e.g., the da Vinci
SP system), the effectiveness and durability of these
robotic systems have yet to be tested. One fundamental
reason is that the proximal joints in these intracorporeal
manipulators are under extreme size constrain with a very
high actuation requirement because an external load on the
end effector has a much longer moment arm than that of the
actuation force from the actuation element inside the
manipulator. Furthermore, enough space and perhaps a
central lumen for actuation of the distal joints and
electrosurgical/mechanical end effectors (e.g., needle
drivers and bipolar graspers) should be reserved in the
proximal joints. It is hence extremely challenging to design
and realize such an intracorporeal manipulator. Many
technical approaches are still being actively explored as
discussed in the “Systems for single-port procedures” and
“Systems for endoscopic and NOTES procedures” sec-
tions.
A recent opinion is to design specific systems for

otorhinolaryngologic, transurethral, or gastrointestinal
procedures. Given the functional and manipulation
similarity (i.e., one vision unit and two tele-operated
manipulators), one general system can be more welcomed.
However, the core problem is that whether such a
universal, modular, and scalable solution (including
materials, structures, and actuations) can be developed to
fulfill all these needs.
Endoscopic imaging heavily depends on the technolo-

gical readiness of chip fabrication techniques in industrial
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electronics. On the other hand, multispectral imaging,
which only needs limited modification to existing endo-
scopic imaging system with added controls over exposure
and illumination, would likely continue to increase its
clinical uses, providing high-definition images on multiple
scales to facilitate surgical operations.
Besides expensive and complex surgical robotic sys-

tems, intelligent hand-held surgical instruments (e.g., the
ones in References [238,239]) can also trigger future
studies. Light weight and control intuitiveness are of
paramount importance for these instruments to gain
clinical acceptance.
While exploring new designs to address the aforemen-

tioned needs in single-port and NOTES/endoscopic
procedures, enough attention should be directed toward
physical forms and control realizations of the new designs.
Physical forms mainly involve the utilized materials and

adopted structure topologies. The intended reduction in
instrument invasiveness with payload and precision
requirements as high as possible needs a design that is
compact and strong. This determines the need for materials
with high Young’s modulus. Soft materials with low
Young’s modulus may only fit in implantable devices that
interact with organs and tissues on a macroscale (e.g., the
soft heart sleeve [240]).
Articulated manipulators in single-port and endoscopic

procedures may suffer from actuation deficiency. In cable-
driven designs, proper tension keeping for adequate
actuation can be challenging, whereas the use of embedded
motors and rigid-linked linkages leads to design bulkiness
and limited dexterity. Continuummechanisms, on the other
hand, deform the structure to transmit motions and forces.
The dual roles of structural and transmission components
can bring design compactness and expand the applications
of continuum medical robots [11]. Superelastic materials
that allow large deformation shall be used. However,
bending in a continuum structure has finite radius, which
may not be able to deliver the required dexterity in tightly
confined spaces. Using continuum-articulated hybrid
structure, which utilizes the advantages from both
structural topologies, may be a promising direction.
Regarding the control realization of future developments

of surgical robotic systems, teleoperation will remain the
main approach for the near future. Given the advances in
communication technology (e.g., 5G), increased control
information exchanges will be implemented, leading to
increased teleoperation transparency.
Current artificial intelligence framework might only

facilitate assistive surgical tasks, such as supervised
suturing and knot tying. This may be due to the fact that
the current data-driven approaches essentially generate an
output by encoding thousands and thousands of particular
samples. A new architect for reasoning is eventually
needed to safely and properly handle patient-specific
surgical operations.

Conclusions

In keyhole and endoscopic surgical procedures, robotics
has greatly improved ergonomics, manipulation dexterity,
and intuitiveness. The gradual global acceptance indicates
the improved clinical outcomes. Given the history on how
robotics has revolutionized various industrial sectors, the
consensus is quite evident: the presence of robotics in
medicine will inevitably increase. Future robotic assistance
in surgery is expected to become a surgeon’s extended
hands, eyes, and even mind in delivering delicate patient-
specific treatments such that patients can benefit from the
implementations of surgical robotic systems.
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