
 

  

Abstract—Researches on continuum robots thrive due to 
many advantages such as design compactness and motion 
dexterity. Among the recent advances, it is well noted the 
proposal of Parallel Continuum Robot (PCR) whose legs are 
made from elastic rods. The legs undergo deformations along 
their entire lengths and sophisticated mechanics is used to 
describe their shapes and the kinematics. Following a different 
approach, this paper proposes to design parallel robots with 
continuum joints. The continuum joints would assume constant 
curvature bending and hence produce relatively simple 
kinematics. With the bending ranges achievable beyond 90°, a 
parallel robot with continuum joints, instead of universal or 
spherical joints, can realize larger workspace. As a particular 
demonstrative example, a Continuum Delta Robot (CDR) is 
proposed. Each of the CDR’s legs consists of two coupled 
continuum joints which inherently realize translational 
movements of the end effector. The design concept, kinematics, 
system description and experimental characterizations are 
presented. From the presented Continuum Delta Robot, more 
parallel robots with continuum joints can be proposed and new 
design methodology can be developed. 

I. INTRODUCTION 
ontinuum robots, a term coined in [1], attracted a lot of 
attentions in the past a few decades due to many 

advantages, such as inherent safety, structural simplicity, 
design compactness, as well as motion dexterity in confined 
spaces [2]. Via intrinsic, extrinsic or hybrid actuation [1], a 
continuum robot deforms itself to realize motion and 
manipulation. Its kinematics then depends on the deformed 
shapes (e.g., bending with possible extension/contraction). 
An approximation in the kinematics modeling assumes that 
the deformed portion (usually called a segment or a section) 
undergoes constant curvature bending [3]. This assumption is 
experimentally verified [4] and widely considered acceptable 
while gauged by the exact deforming shapes of the continuum 
segments that are obtained using iteratively solved nonlinear 
mechanics [5], elliptic integrals [6], Cosserat rod theory [7], 
virtual power [8], etc. 

Continuum robots have found considerable applications in 
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medical robotic systems [9], and industrial inspection, 
grasping, manipulation and even locomotion [10-16]. In 
many of the aforementioned examples, the applied continuum 
robots either possess a few serially connected segments for 
enhanced mobility and dexterity, or have several segments 
connected to a base in parallel for grasping or locomotion. 
Under the constant curvature bending assumption, each 
segment usually possesses two bending DoFs (Degrees of 
Freedom). Alternatively, multi-DoF movements could also be 
realized by a recently proposed PCR (Parallel Continuum 
Robot) that is similar to a Gough-Stewart parallel robot [17, 
18], as shown in Fig. 1(a). Accurate positioning and dexterous 
orientating of the moving platform is achieved by the 
deformed legs. Cosserat rod theory was used to describe the 
deformed shapes and kinematics. However, computational 
efficiency [19] of the sophisticated mechanics model and 
elastic stability [20] of the elastic legs could seem daunting 
when one attempts to build his/her own PCR. 

Aiming at expanding the boundaries of continuum robotics 
research, this paper proposes to design parallel robots with 
continuum joints. The continuum joints would assume 
constant curvature bending and hence produce simpler 
kinematics than the PCR whose legs are made from thin rods 
and the kinematics model relies on the Cosserat rod theory. 
Furthermore, these continuum joints possess two more 
characteristic features: i) large motion ranges, and ii) easily 
realizable coupling between two such joints. 

 
Fig. 1.  Non-rigid parallel robots: (a) the Stewart-type PCR in [17], and (b) 

the proposed CDR (Continuum Delta Robot) 
In this paper, a Continuum Delta Robot (CDR) is proposed 

as a demonstrative example, as shown in Fig. 1(b). Each of 
the CDR’s legs consists of two coupled continuum joints 
which inherently realize translational movements of the 
moving platform. 
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The proposed CDR is actuated by three translational 
actuators and possesses three DoFs under the constant 
curvature bending assumption of the continuum joints. This 
assumption, which leads to the CDR’s simple kinematics, 
would be verified by the to-be-presented experimental results 
achieving ±0.5 mm positioning accuracy. 

If a continuum joint is designated as a C joint, the proposed 
CDR is a 3-PCC parallel robot. The existing counterparts 
include the 3-PSS robot (the linear Delta robot) [21] and the 
3-PUU robots [22-24]. With the bending ranges possibly 
achievable beyond ±90° as indicated in Fig. 2(a), the parallel 
robot with continuum joints, instead of universal or spherical 
joints, can realize larger workspace. 

The CDR’s parallel structure realizes its stiffness of about 
4 N/mm in the XY directions and about 57 N/mm in the Z 
direction. This stiffness level could be beneficial in 
maintaining an acceptable positioning accuracy as well as 
avoiding damaging delicate workpieces if the CDR is applied 
in pick-and-place tasks. Existing researches on parallel robots 
regarding their compliance mostly focus on the actuator/joint 
compliance [25] and the links’ flexibility (e.g., in [26]). 

Flexure joints in parallel robots (e.g., in [27-32]) can be 
seen similar to the continuum joints. The core differences are 
summarized as follows. Firstly, a continuum joint inherently 
possesses two bending DoFs under the constant curvature 
bending assumption where twisting is neglected. Then the 
rod-type flexure joint is most comparable. But the allowed 
bending range of a continuum joint could be beyond ±90° as 
shown in Fig. 2(a) and [6], which might be substantially 
larger than that of a rod-type flexure joint. Secondly, a 
continuum joint assumes a circular arc shape with a 
non-negligible length. On the other hand, a rod-type flexure 
joint is either approximated as a universal joint (even a 
spherical joint in some cases) or undergoes small deflection 
as an Euler-Bernoulli beam. Most uniquely, motions of two 
continuum joints in a parallel robot can be coupled by 
connecting their structural members (e.g., the backbones as 
explained in Section II). Then two coupled joints can produce 
a translational motion which is only realized by a 
parallelogram with four joints (flexure or spherical). 

The core contributions of this paper lie on the proposal of 
parallel robots with continuum joints. To illustrate the 
distinctive features the continuum joints can bring, the design 
concept, kinematics, system descriptions and experimental 
characterizations of a Continuum Delta Robot is presented. 
To the best of the authors’ knowledge, the proposed CDR is 
the first parallel robot with continuum joints. It is expected 
that more parallel robots with continuum joints can be 
proposed from the CDR and new design methodology can be 
developed. 

This paper is organized as follows. Section II explains the 
design concept while Section III presents the kinematics and 
dimension optimization. The CDR’s system descriptions are 
detailed in Section IV with the kinematic calibrations and the 
experimental characterizations reported in Section V. Section 
VI summarizes the conclusions and the future work. 

II. DESIGN CONCEPT 
A continuum joint in a parallel robot consists of an end disk, 

a few spacer disks and several backbones made from 
super-elastic nitinol, as shown in Fig. 2(b). Each backbone is 
fixed at the end disk and can slide in the holes of the spacer 
disks and inside the multi-lumen tube. When an external 
wrench is exerted on the end disk, the continuum joint would 
be bent and the backbones would generate translational 
movements inside the multi-lumen tube.  

If two identical sized continuum joints are coupled by 
connecting their corresponding backbones inside the 
multi-lumen tube as shown in Fig. 2(b), it forms a particular 
case of a dual continuum mechanism that was proposed in 
[33]. Then the two continuum joints are addressed as the 
Proximal Joint (PJ) and the Distal Joint (DJ). The PJ’s 
bending will bend the DJ in the opposite direction for the 
same amount due to the fact that translational movements of 
the PJ’s backbones push and pull the DJ’s backbone to bend 
the DJ. Detailed proof should be referred to the backbone 
actuation kinematics for a dual continuum mechanism as in 
[33]. In a practical implementation, the corresponding 
backbones of the PJ and the DJ are physically one piece, 
routed from the DJ to the PJ. 

 
Fig. 2. Design concept: (a) bending shapes of a leg with two coupled 

continuum joints, and (b) the proposed CDR  
When the PJ and the DJ undergo the same amount of 

bending in the opposite direction, the end disk of the DJ will 
always be parallel to that of the PJ. Then a pair of coupled PJ 
and DJ with the connecting multi-lumen tube form one of the 
three legs of the Continuum Delta Robot as in Fig. 2(b). 

Three linear guide actuators translate the PJ’s end disks of 
the three legs, while the three DJ’s end disks are attached to a 
moving platform. Translations of the moving platform are 
hence realized under the motion constraint that the DJ’s end 
disk always translates with respect to the PJ’s end disk. This 
actuation is different from the conventional way of actuating 
a continuum robot: none of the backbones is directly actuated. 

Using C to designate a continuum joint, the proposed CDR 
is a 3-PCC parallel robot. In a sense, it is similar to a 3-PSS 
linear Delta robot with inclined guideways (e.g., the Keops 
robot in [21]). Other existing counterparts include the 3-PUU 
robots [22-24]. The use of the continuum joints allows bigger 
joint motion ranges: ±90° for a continuum joint v.s. ±30° for 
a spherical joint as in [21] and ±20° for the cone angle limit 
of a universal joint as in [24]. What’s more, the coupling 
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between the DJ and the PJ replaces the parallelogram in a 
Delta robot to produce translational outputs. 

III. KINEMATICS 
When the three end disks of the legs’ proximal joints are 

translated by the linear guide actuators, all the continuum 
joints bend passively. Translations of the moving platform are 
realized under the motion constraint imposed by the coupling 
between the DJ and the PJ. 

The CDR’s pose/kinematics is determined by the minimum 
of the robot’s potential energy (including gravitational and 
elastic portions). Under the CDR’s installation orientation, 
each leg will have lower gravitational and elastic potential 
energies with less bending. Under the same bending angle, 
the DJ and the PJ will have lower elastic potential energy for 
the constant curvature bending. The CDR has six continuum 
joints that are connected. Their potential energies can be 
redistributed passively to reach a minimum. Hence it is 
approximated that the DJs and the PJs all undergo constant 
curvature bending. This modeling assumption is widely 
adopted [3] and experimentally validated [6]. The 
experimental results presented in Section V also verify the 
validity of this assumption. 

Nomenclature and several coordinate systems are defined 
in Section III.A, while the inverse kinematics is derived in 
Section III.B. A dimension optimization is then presented in 
Section III.C. 

A. Nomenclature and Coordinate Systems 
Nomenclature is defined in Table I, while the assigned 

coordinate systems are defined as follows, referring to Fig. 3 
and Fig. 4. 

TABLE I 
NOMENCLATURE USED IN KINEMATICS MODELING 

Symbol Representation 
i Index of the CDR’s legs, i=1,2,3 αi Axis inclination angle of the guideway in the ith leg βi 

βi = (i−1)π/3 is the division angle from ˆ 0x  to the projection of 
the ith guideway actuator’s axis on the XY plane of { }O .     qi qi  is the actuation length of the ith leg, measured from the origin 
O to the center of the PJ’s end disk along the guideway 
actuator’s axis. 

Li Length of the PJ and the DJ in the ith leg 
Di Length of the straight multi-lumen guiding tube in the ith leg θi Bending angle of the PJ and the DJ in the ith leg δi A right-handed rotation angle from ˆ i1y   to ˆ ipex  about ˆ ipez . ϕi 

ϕi = (i−1)π/3 is the division angle from ˆ Px  to a ray passing 
through the center of the DJ’s end disk in the ith leg. 

ri 
Distance from the origin P to the center of the DJ’s end disk in 
the ith leg.  

 

• Reference Coordinate ˆ ˆ ˆ{ } { , , }0 0 0O ≡ x y z  locates its origin 
O at the intersection of three axes along which the PJ’s end 
disk is translated. The ˆ 0x  points towards the 1st leg.  

• End disk Coordinate of the ith PJ ˆ ˆ ˆ{ } { , , }ipe ipe ipeipe ≡ x y z  is 
fixed to the center of PJ’s end disk in the ith leg, translated 
from { }O . 

• Bending Plane Coordinate 1 of the ith leg ˆ ˆ{ } { , ,i1 i1i1 ≡ x y  
ˆ }i1z  shares its origin with { }ipe . ˆ i1x  is aligned with ˆ ipez  
such that the ith leg bends in the XY plane of { }i1 .  

• Bending Plane Coordinate 2 of the ith leg ˆ ˆ{ } { , ,i2 i2i2 ≡ x y  
ˆ }i2z  is translated from { }i1  with the origin located at the 
center of the DJ’s end disk.  

 
Fig. 3. Nomenclature and coordinates of the CDR 

 
Fig. 4. Nomenclature and coordinates of the ith leg 

 

• End Disk Coordinate of the ith DJ ˆ ˆ ˆ{ } { , , }ide ide ideide ≡ x y z  is 

Virtual Central 
Backbone 

Bending 
Plane 

ˆ idex

ˆ idey

ˆ ˆide i2=z x

ˆ Px

ˆ Py

ˆ Pz

iθ

iδ

iδ

ir

iD

ˆ ipex

ˆ ipey

ˆ ˆipe i1=z x

ˆ i1z

ˆ i2z

ˆ i2y

ˆ i1y

P

Axis of the 
2nd guideway

1st leg 

2nd leg

ˆ 2dex
ˆ 2dey

ˆ 2dez

ˆ Px ˆ Py

ˆ Pz
ˆ 0x ˆ 0y

ˆ 0z

P

2α

2β

2φ

O

ˆ 2pex
ˆ 2pey

ˆ 2pez

2q

978-1-5386-1854-7/18/$31.00 ©2018 IEEE 750



 

attached to the center of the DJ’s end disk in the ith leg. The 
coupled bending of the DJ and the PJ maintains the same 
orientation between { }i1  and { }i2 , { }ipe  and { }ide , 
respectively. 

• Moving Platform Coordinate ˆ ˆ ˆ{ } { , , }P P PP ≡ x y z  locates its 
origin P at the center of the end platform, translated from 
{ }ide . Please note that all the { }ide  coordinates and the 
{ }ipe  ones have the same orientation since only 
translational motions are generated on the moving platform. 
The ˆ Px  points towards the 1st leg. 

B. Inverse Kinematics  
For a parallel robot, it is often more convenient to start with 

the inverse kinematics. The CDR’s forward kinematics (like 
the one solved for a Gough-type parallel manipulator [34]) 
will be deferred to a future study where all the respects for the 
CDR’s kinematics will be investigated.   

The position of the center of the moving platform OpP = [xP 
yP zP]T in { }O  is of interest. 

The end disk of the DJ in the ith leg is fixed to the moving 
platform and the homogeneous transformation matrix linking 
{ }P  and { }ide  can be written as in (1). 

3 3

1

ide
ide P

P
× 

=  
 

I pT
0

 (1) 

Where idepP = ri [cosϕi sinϕi 0]T. 
The homogeneous transformation matrix linking { }ide  

and { }ipe  is written as in (2). Since the DJ and the PJ within 
the ith leg always undergo the same amount of bending in the 
opposite direction, { }ide  is translated from { }ipe . The path 
for this translation can be characterized by a virtual central 
backbone as the dashed line in Fig. 4, within the bending 
plane that is characterized by δi. The entire virtual central 
backbone consists of three sequential portions: i) the PJ’s 
central backbone (a circular arc of length Li and bent angle θi); 
ii) the axis of the multi-lumen tube for a distance of Di; and 
iii) the DJ’s central backbone (again a circular arc of length Li 
and bent angle θi). The expression of ipe

idep  is derived in (3). 

3 3

1

ipe
ipe ide

ide
× 

=  
 

I pT
0

 (2) 

2 (cos 1)cos / sin cos
2 ( cos )sin / sin sin

2 sin / cos

i i i i i i i
ipe

ide i i i i i i i

i i i i i

L D
L 1 D

L D

θ δ θ θ δ
θ δ θ θ δ

θ θ θ

− − 
 = − + 
 − − 

p   (3) 

Where ipepide = [0 0 2Li+Di]T  when θi approaches zero, using 
the Taylor expansion of sinθi and cosθi. 

The guideway actuator translates the PJ’s end disk along its 
axis that passes the origin O. Then the homogeneous 
transformation linking { }O  and { }ipe  is written in (4). 

3 3

1

O
O ipe

ipe
× 

=  
 

I pT
0

 (4) 

Where Opipe = qi[cosβicosαi  sinβicosαi  sinαi]T. 

 With OTipe, ipeTide and ideTP derived, the kinematics for OpP 
concerning the ith leg is formulated in (5). 

[ ]1 1
T TO O

P P 1 3×  = p T 0  (5) 
Where OTP = OTipe ipeTide ideTP is a function of θi, δi and qi, 
given the structural parameters of αi, βi, Li, Di, ri and ϕi. 

A point at OpP = [xP yP zP]T is admitted into the CDR’s 
workspace, when the kinematics in (5) is solvable for a set of θi, δi and qi values within their joint ranges (e.g., θi ∈ [0°, 
 i ∈ (-180°, 180°]  and qi ∈ [50mm, 300mm]), for eachߜ ,[90°
leg of the CDR. The inverse kinematics in (5) was solved 
using  the Newton-Raphson method in MATLAB. q = [q1 q2 
q3]T is the joint space vector, while θi and δi are intermediate 
variables to determine the poses of each leg. 

C. Dimension optimization  
With the kinematics of the CDR derived, a dimension 

optimization for maximizing the CDR’s workspace was 
carried out to determine the CDR’s structural parameters. 

There are six structural parameters in the CDR: αi, βi, Li, Di, 
ri and ϕi. For the sake of simplicity, βi = ϕi = (i−1)π/3, while αi, Li, ri and Di are set identical for all the three legs. 

Since the optimization tries to maximize the CDR’s 
workspace, it is obvious that the longer the legs are, the bigger 
workspace will be obtained. Hence a constraint is set in (6). 
Li + Di = 500 mm (6) 

It is desired that the CDR would possess an acceptable 
stiffness. It is known that a longer continuum joint would lead 
to a lower stiffness of this joint. Hence the optimization is set 
as in (7), where α = α1 = α2 = α3 is the inclination angle of the 
actuator guideway, L = L1 = L2 = L3 is the length of the 
continuum joint, r = r1 = r2 = r3 is the radius for the DJs’ 
distribution, and VCDR is the volume of the CDR’s workspace 
that is obtained when θi ∈ [0, 90°], ߜi ∈ (-180°, 180°] and qi ∈ 
[50mm, 300mm] by scanning the joint space q.  

, ,
max CDR

L r

V
Lα

 (7) 

 
Fig. 5. Dimension optimization for the CDR when r = 20 mm  

The optimization was conducted in an enumerative manner 
by varying α, L and r in increments of 10° and 10mm from 0° 
to 70°, from 40 mm to 100 mm, and from 20 mm to 50 mm, 
respectively. The maximum is reached at α = 50°, L = 60 mm 
and r = 20 mm. And these three values were assigned to the 
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structure of the CDR. The plot in Fig. 5 is for r = 20 mm, due 
to the difficulty in visualizing the optimization value for three 
variables. 

Using the structural and actuator parameters of the CDR 
listed in Table II, the CDR’s workspace can be visualized in 
Fig. 6 with a CDR’s pose shown. If the joint limit on θi is 
reduced to 30°, the workspace would be substantially reduced 
to about 26.1% of the original volume, as in Fig. 6 as well. 

 

TABLE II 
Parameters of the CDR αi = 50° Li = 60 mm ri = 20 mm Di = 380 mm β1 = ϕ1 = 0° β2 = ϕ2 = 120° β3 = ϕ3 = 240° 

θi ∈ [0°,90°] δi ∈ (-180°,180°] qi ∈ [50mm, 300mm] 
  

 
Fig. 6. Workspace of the CDR 

 

IV. SYSTEM DESCRIPTIONS OF THE CDR 
With the kinematics and dimensional optimization of the 

CDR carried out in Section III, detailed system descriptions 
are described in this section.   

A. Structure of CDR 
The CDR consists of three identical legs with two coupled 

continuum joints, as shown in Fig. 7. Within each leg, a ∅22mm multi-lumen tube is used to connect the DJ and the PJ 
with the same outer diameter. To reduce tooling cost and 
weight, this multi-lumen tube is fabricated by welding 
multiple spacer disks and strips to four stainless steel tubes 
using a laser welding machine. 

Backbones of the continuum joints are arranged around a ∅20mm circle, routed from the DJ to the PJ through the 
channels of the multi-lumen tube. 

The backbones are made from super-elastic nitinol, whose 
elastic strain range can be as high as 6 ~ 8 % [35]. In order to 
achieve a proper safety factor, a maximum of 2% strain is 
allowed. Due to the material availability that is in stock, the 
backbones are set to have a diameter of 1.2mm. The maximal 
strain is about 1.6% for a 90° bending on the joint. 

All the CDR’s three legs are attached to the moving 
platform. The centers of the DJ’s end disks are evenly 
distributed on a ∅40 mm circle (a.k.a., ri = 20 mm). 

The PJ’s end disks are attached to the sliders of three 
guideway actuators, via connection wedges. In inclination 
angle of the guideway actuators is 50°. Via the connection 
wedges, the PJ’s end disks are kept at horizontal orientation 
during translations. 

Each of the guideway actuators consists of a motor, a 
timing belt assembly, a linear rail and a slider. The motors 
(DCX22L) with the GPX-22 gearheads (gear ratio of 21:1) 
are from Maxon Inc. Three limit switches (EE-SX672 from 
OMRON Inc.) are mounted on the linear rails for actuator 
homing. 

 
Fig. 7. Structure of the CDR 

B. Control Infrastructure  
The CDR’s control infrastructure is mostly designed for 

the proof-of-concept experiments.  
An embedded controller (Apalis T30 from Toradex AG, 

Switzerland) with a 1.3GHz multi-core CPU and 1GByte 
RAM is chosen as the central controller. It comes with an 
operating system that is based on Linux and customized for 
Apalis T30. 

Three digital drivers (EPOS 24/2 from Maxon Inc.) are 
used to drive the motors. The driver communicates with the 
central controller via the CAN (Controller Area Network) bus 
according to the standard CANopen protocol. One digital I/O 
of the driver is connected to the limit switch of the linear 
guideway actuator for homing operation.  

V. EXPERIMENTAL CHARACTERIZATIONS 
After the CDR constructed, a series of experiments were 

carried out to characterize its performance. 

A. Calibrations and Actuation Compensation 
Since the continuum joints (PJ and DJ) passively bend into 

circular arcs, existing compensation methods in [36, 37] that 
realizes accurate bending angles are not required. Instead, the 
implemented calibration refers to an existing approach for a 
Delta robot as in  [38].  

The presented calibration focuses on the CDR’s structure 
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parameters whose errors come from various aspects, such as 
fabrication and assembling. 21 parameters of the three legs 
are involved, as listed in Table III. All the parameters except 
qi_home are designed according to the dimensional optimization 
results. qi_home is the position of the limit switch for homing. 

For the motion calibration, the CDR was commanded to 
move to 96 positions inside its workspace three times. The 96 
positions are evenly distributed on four circles with the 
diameters of 150mm and 300mm and the centers located at [0 
0 −300mm]T and [0 0 −350mm]T in { }O . The actual 
positions of the moving platform were recorded using an 
optical tracker (Micron Tracker SX60 from Claron Tech Inc) 
via the three markers placed on the moving platform and two 
markers perpendicularly placed on the CDR’s base, as shown 
in Fig. 8. 

The calibration is carried out as an optimization as 
formulated in (8). The fminunc function in MATLAB was 
used to solve this optimization, using the nominal structural 
values as the initial guesses. The results, as the actual 
structural values, are obtained and listed in the Table III. 

_[ , , , , , , ]

argmin [ ]
i i i i i i i home

O O ipe ide T
measured ipe ide P

L D r q

0 0 0 1

α β φ =

− P T Τ T  (8) 

Where  1
TO O T

measured measured =  P P is the homogeneous vector 

for the measured positions of the moving platform in { }O . 
TABLE III 

Calibrated Parameters of the CDR 
Leg 

index αi (°) βi (°) ϕi (°) Li  (mm) Di (mm) 
ri(mm) qi_home(mm)

1 51.28 0.03 -0.01 60.00 390.00 19.99 314.13 
2 50.90 119.98 120.01 59.97 384.98 20.01 314.69 
3 51.83 239.99 240.00 60.02 390.00 19.99 314.17 

 
Fig. 8.  Experimental setup for the motion calibration 

 

Then the CDR was instructed to reach the same and 24 
additional positions to verify the calibration. The positioning 
errors before and after the calibration for the first 96 positions 
are presented in Fig. 9. The errors are reduced to ±0.5mm on 

the ∅150mm circle and ±1 mm on the ∅300mm circle whose 
centers are both located at [0 0 −300mm]T in { }O . 

The 24 additional positions are distributed on the vertices 
of six squares with the edge lengths of 100 mm, 200 mm, and 
300mm, and the centers at [0 0 −240 mm]T and [0 0 −340 
mm]T in { }O , respectively, as shown in the inset of Fig. 10. 
The positioning errors are plotted in Fig.10.  

The positioning errors for points further away from the 
origin of { }O  become larger, because the continuum joints in 
the CDR bend more under these poses. Then the internal 
wrench interactions between the continuum joints and other 
structural members might have deviated the continuum joints 
from their assumed circular shapes, leading to increased 
errors. It is desired to improve the motion calibration results 
in a future study, via using more sophisticated approaches 
(e.g., the iterative algorithm in [39] or taking the 
measurement errors into consideration as in [40]). 

 
Fig. 9.  Positioning errors of the CDR’s moving platform (a) before and (b) 

after actuation compensation with no loads  
 

B. Stiffness Characterization 
The CDR’s stiffness was experimentally characterized. The 

moving platform was commanded to move to three 
representative positions at [0 0 −300 mm]T (#1), [150 mm 0 −300 mm]T (#2) and [0 75 mm −400 mm]T (#3) all measured 
in { }O . The poses of reaching the three positions are shown 
in Fig. 11(a). 

As shown in Fig. 11(b), a digital force gauge (HF-300 from 
Zhengkai Precision Instrument Co. China with a 
measurement range of ±300N) was used to push the CDR’s 
moving platform. The gauge was driven by a power screw 
actuator with a lead of 2mm. The deflection would equal to 
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the amount of pushed distance from the power screw, while 
the force was recorded by the force gauge. The forces v.s. the 
deflections in the XYZ directions are plotted in Fig. 11(c). 

The CDR’s stiffness varies from 0.80 N/mm to 3.75 N/mm 
in the XY directions, while the stiffness is from 33.17 N/mm 
to 57.55 N/mm in the Z direction. The stiffness in the Z 
direction is much higher, due to the fact that the continuum 
joint is inherently stiffer in its axial direction than in the 
lateral direction. 

 
Fig. 10.   Positioning errors for the additional 24 points 

 
Fig. 11.   Experiments for the stiffness characterizations: (a) the tested poses, 

(b) the setup, and (c) the results  

C. Movements of the CDR inside Its Workspace 
As the last set of experiments, the CDR was instructed to 

move to various positions inside its workspace to demonstrate 
the motion capability. 

When a target position is given, for the ith leg of the CDR, 
the set of θi, δi and qi values are solved from the kinematics in 
(5). The solutions are validated when the values are within the 
joint ranges (e.g., θi ∈ [0°, 90°] and qi ∈ [50mm, 300mm]). 
Then q = [q1 q2 q3]T is obtained for the target pose. 

A joint level interpolation was used to drive the CDR to 
accomplish a pick-and-place task. Movements of the CDR are 
shown in Fig. 12, as well as in the multimedia extension. 

 

 
Fig. 12.   The CDR’s movements for a pick-and-place task 

VI. CONCLUSIONS AND FUTURE WORK 
This paper proposes to design parallel robots with 

continuum joints. This attempt bridges continuum robots and 
parallel robots in a way different than the existing parallel 
continuum robots. To the best of the authors’ knowledge, this 
development is the first of this kind.  

Continuum joints bring the characteristics such as i) larger 
motion ranges and lower stiffness than those of universal or 
spherical joints, ii) simple kinematics stemmed from circular 
bending shapes, and iii) easily realizable coupling between 
two continuum joints via connecting the backbones. Larger 
motion ranges lead to larger workspace, while lower stiffness 
could avoid damaging delicate workpieces if this kind of 
robots is applied in pick-and-place tasks. Motion coupling 
between continuum joints introduces new possibilities of 
generating diverse movements. 

As a illustrative example, the design concept, kinematics, 
system description and experimental characterizations of a 
Continuum Delta Robot (CDR) is presented in detail. The 
CDR is a 3-PCC robot where C designates a continuum joint. 
It is actuated by three guideway actuators and realizes three 
translational DoFs. After the motion calibration, the CDR 
realizes positioning accuracy of from ±0.5 mm to ±1.5 mm 
within its workspace. Its stiffness ranges from 3.75 N/mm in 
the XY directions to 57.55 N/mm in the Z direction. 

The future work would be carried out mainly on two 
aspects. One is to further investigate possible forms of 
parallel robots with continuum joints. New design 
methodology would be developed to help synthesize new 
forms of this kind of parallel robots. One possibility is to 
change the arrangement of the guideway actuators to increase 
the isotropy of the stiffness. The other is to further the 
understanding of the proposed CDR, including i) 
investigating the forward and instantaneous kinematics, ii) 
introducing refined calibration processes for different 
bending of the continuum joints for improved positioning 
accuracy, iii) investigating its dynamic bandwidth for 
increased motion speeds, etc.  
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