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Abstract—Continuum manipulators have been increasingly 
used in surgical applications recently. A continuum surgical 
manipulator can be controlled to perform useful tasks when 
partially inserted into a patient’s cavity, enlarging the 
workspace of the manipulator. During the insertion and 
retraction, the inserted portion of the manipulator achieves 
different configurations, and a configuration transition control 
framework was proposed based on the resolved motion rate 
control. However, the inverse kinematics (IK) under the 
configuration transition framework suffers from failures from 
time to time due to the reduced motion capability during 
configuration transition. This paper hence proposes to improve 
the IK performance of the configuration transition control with 
the assistance of a feedforward neural network (FNN). During 
the iteration to solve the IK, the priority and the value of linear 
and angular velocities are adjusted by the FNN which takes the 
current and target end effector poses as inputs. By properly 
adjusting the task priority and the values of the end effector 
twists, the converging trajectory of the manipulator is regulated 
to reduce the cases of being trapped in local minima. Numerical 
simulations were carried out to validate the proposed method. 
The results show that the proposed method achieves a higher 
success rate than the original configuration transition method. 

I. INTRODUCTION 

Minimally Invasive Surgery (MIS) offers benefits such as 
less pain, quicker recovery, and lower postoperative 
complication risks [1], while also posing challenges to the 
surgeons. To address the operative challenges of MIS, 
numerous robot-assisted surgical platforms have been 
developed [2, 3]. Apart from articulated structures, continuum 
mechanisms are promising candidates for robotic surgical 
platforms [3] and are adopted in the designs of several surgical 
manipulators [4-7], due to their dexterity, structural 
compliance, and design compactness. 

During surgical operations, a multi-segment continuum 
surgical manipulator is usually fully inserted through a trocar 
into a patient’s abdominal cavity, as shown in Fig. 1(d). In this 
working pattern, an unreachable volume exists inside the 
translational workspace of the manipulator, as investigated in 
[8]. Nevertheless, a multi-segment continuum manipulator is 
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capable of performing surgical tasks even when partially 
inserted, as shown in Fig. 1(a)-(c). Teleoperation in these 
partially inserted configurations can extend the manipulator’s 
overall motion capability, even though the motion capability 
might be reduced in these configurations. 

 
Figure 1.  Different configurations of the multi-segment continuum surgical 
manipulator: (a) the 1st configuration, (b) the 2nd configuration, (c) the 3rd 
configuration, and (d) the 4th (fully inserted) configuration; (e) the 
manipulator’s actuation scheme. 

To realize the configuration transition control of a 
continuum manipulator, a kinematics framework was 
proposed previously [9]. Based on the resolved motion rate 
control [10], this framework solves the inverse kinematics (IK) 
under different configurations in a unified way. However, this 
framework can still fail when the manipulator is controlled 
among the partially inserted configurations, due to the reduced 
kinematic capability in such configurations. 

Feedforward neural network (FNN), as a widely adopted 
supervised learning architecture, has been used in solving the 
IK and inverse statics problems of continuum manipulators 
[11-13]. The FNN usually consists of neurons that are 
connected by weights and biases and map the inputs to the 
outputs by nonlinear functions. By training the FNN using 
labeled data sets, the weights and biases are adjusted such that 
the FNN can approximate complex functions. Taking 
advantage of the universal approximation capability of the 
FNN, the nonlinear IK problem of the continuum manipulator 
can be quickly solved by the FNN after proper training. On the 
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other hand, FNN can be used to construct nonlinear motion 
controllers and assist in the control of multi-segment 
continuum manipulators, accounting for uncertainties in the 
robot dynamics and the external disturbance [14, 15]. 

Inspired by the applications of the FNN in robot control, 
this paper proposes to improve the success rate of the 
configuration transition IK of a 2-segment continuum surgical 
manipulator. An FNN is used to predict the iteration result of 
the resolved motion rate method under different priorities 
between the linear and angular velocity. The task priority and 
the value of the end effector twists (i.e., linear and angular 
velocities) are adjusted according to the FNN prediction 
during iterations. This helps to regulate the converging 
trajectory and reduce the cases of being trapped in local 
minima. The effectiveness of the proposed method is validated 
using numerical simulations. 

The rest of this paper is organized as follows. Section II 
defines the configurations of the manipulator, while the neural 
network assisted control framework is elaborated in Section 
III. Numerical simulation results are presented in Section IV 
with the conclusions summarized in Section V. 

II. KINEMATICS NOMENCLATURE AND CONFIGURATION 

TRANSITION CONTROL 

A. Kinematics Nomenclature 

Based on the constant curvature assumption, the modeling 
of a single continuum segment is shown in Fig. 2, while the 
nomenclatures are listed in Table I. The kinematics of the 
manipulator can be referred to [9]. 

TABLE I.  NOMENCLATURE USED IN THE KINEMATICS MODEL 

Symbol Definition 

t Index of the segments. t = 1, 2. 

j Index of the configurations. j = 1, 2, 3, 4. 

Lt, Lt0 Inserted length and the full length of the tth segment. 

Lr, Lr0 Inserted length and the full length of the rigid stem. 

Ls, Ls0 Inserted length and the full length of the base stem. 

θt Bending angle of the tth continuum segment. 

δt Bending direction angle of the tth continuum segment. 

φ Axial rotation realized by the actuation unit. 

v, ω Desired linear and angular velocity of the end effector. 

ψj 
The configuration variable vector of the manipulator in 
the jth configuration. 

Jj
 The manipulator’s Jacobian matrix in its jth configuration. 

Jjv, Jjω
 Jacobian matrices of the tip velocity and angular velocity 

in the jth configuration. 
 

 
Figure 2.  Kinematics modeling of the tth bending segment. 

B. Configuration Definition 

The manipulator has two inextensible continuum segments 
with a rigid straight stem in between. The segment #1 is 
stacked on a base stem, as shown in Fig. 1(d). The manipulator 
is mounted onto an actuation unit, which provides rotation 
about and translation along its axis, as shown in Fig. 1(e).  

When an inextensible bending segment is partially inserted, 
the inserted portion is kinematically treated as possessing 3 
DoFs: 2-DoF bending and 1-DoF length changing. This 
insertion process hence leads to 4 configurations as follows. 

 The 1st Configuration (C1): the segment #2 is partially 
inserted as shown in Fig. 1(a). The manipulator has 4 DoFs: 
axial rotation, length changing, and 2-DoF bending of the 
segment #2. The configuration verctor is ψ1 = [φ θ2 L2 δ2]T. 

 The 2nd Configuration (C2): the rigid stem is partially 
inserted as in Fig. 1(b). The manipulator has 4 DoFs: axial 
rotation and feeding of the rigid stem, as well as 2-DoF 
bending of the segment #2. The configuration vector is ψ2 
= [φ Lr θ2 δ2]T. 

 The 3rd Configuration (C3): the segment #1 is partially 
inserted as in Fig. 1(c). The manipulator has 6 DoFs: 
2-DoF bending of the segment #2, as well as axial rotation, 
length changing and 2-DoF bending of the segment #1. 
The configuration vector is ψ3 = [φ θ1 L1 δ1 θ2 δ2]T. 

 The 4th Configuration (C4): the base stem is partially 
inserted as in Fig. 1(d). The manipulator has 6 DoFs: 
2-DoF bending of for each of the segment #1 and #2, as 
well as axial rotation and feeding of the base stem. The 
configuration vector is ψ4 = [φ Ls θ1 δ1 θ2 δ2]T. 

C. Configuration Transition 

The configuration transition is triggered when a length 
variable exceeds its limit during the insertion of the 
manipulator. The triggering variables for the configuration 
transition are summarized in Fig. 3, while the strategies are 
explained as follows. 

 Between C1 and C2: the manipulator configuration with L2 
= L20 in C1 is identical to that with Lr = 0 in C2. The 
transition from C1 to C2 is triggered when L2 is updated 
longer than L20. The overshoot of L2 (excess value after 
one update) in C1 is set to Lr in C2: 

 2 2 1 20( ) ( )r C CL L L  .  (1) 

The transition from C2 to C1 is triggered when Lr is 
updated less than 0. The overshoot of Lr (a negative value) 
in C2 is set to L2 in C1: 

 2 1 2 20( ) ( )C r CL L L  .  (2) 

 Between C2 and C3: the manipulator configuration with Lr 
= Lr0 in C2 is identical to that with L1 = 0 in C3. The 
transition from C2 to C3 is triggered when Lr is updated 
longer than Lr0. The overshoot of Lr in C2 is set to L1 in C3: 

 1 3 2 0( ) ( )C r C rL L L  .  (3) 

The transition from C3 to C2 is triggered when L1 is 
updated less than 0. The overshoot of L1 (a negative value) 
in C3 is set to Lr in C2: 

x̂

ŷ

ẑ

t

t

tL
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 2 1 3 0( ) ( )r C C rL L L  .  (4) 

 Between C3 and C4: the manipulator configuration with L1 
= L10 in C3 is identical to that with Ls = 0 in C4. The 
transition from C3 to C4 is triggered when L1 is updated 
longer than L10. The overshoot of L1 in C3 is set to Ls in C4: 

 4 3 101( ) ( )s C CL L L  .  (5) 

The transition from C4 to C3 is triggered when Ls is 
updated less than 0. The overshoot of Ls (a negative value) 
in C4 is set to L1 in C3: 

 3 4 101( ) ( )C s CL L L  .  (6) 

After a configuration transition, the configuration 
variables other than the length variables are inherited from the 
previous configuration. 

 
Figure 3.  The variables and constants of the manipulator and the transition 
conditions between the adjacent configurations. 

D. Prioritized Resolved Motion Rate Control 

The resolved motion rate control [10] iteratively updates 
the configuration variables by using the Jacobian to achieve 
the desired end effector twist, which is obtained as: 

 v P

w R

k

k

  
    
   

ev
x

eω
 ,  (7) 

where eP and eR denote the position and orientation error to the 
target pose, respectively, while kv and kw are proportional 
gains. In Configuration C1 and C2, the manipulator only 
possesses 4 DoFs and may not always be able to reach a 
desired position and orientation at the same time. Therefore, 
the linear and angular velocities are separately treated, with 
one of them chosen as the primary task and the other as the 
secondary task. The priority is handled by the null space 
projection method as in (8) [16]: 

 ( ( )) ( )j jp p js jp jp s js jp p
      ψ J x J I J J x J J x    ,  (8) 

where px  and sx  denote the primary and secondary tasks 

(selecting from v and ω), respectively; Jjp and Jjs denote the 
Jacobians of the primary and secondary tasks in the jth 
configuration (selecting from Jjv and Jjω), respectively. J+ 
represents the Moore-Penrose pseudo-inverse of J. 

III. FEEDFORWARD NEURAL NETWORK ASSISTED RESOLVED 

MOTION RATE CONTROL 

While solving the IK problem, the resolved motion rate 
control method relies on the proper setting of the task priority 
and the end effector twists to successfully converge. Improper 
task priority or end effector twists can lead to local minima 
while traversing multiple configurations, such as converging 
to the target position with a different orientation [9]. To 
alleviate this problem, an FNN is used to adaptively adjust the 
priority and values of the end effector twist based on the 
current and target end effector poses. 

A. Feedforward Neural Network 

An FNN consists of several layers of processing units 
called neurons, including an input layer, several hidden layers, 
and an output layer. The input layer takes an input vector into 
the neural network, with the number of neurons equal to the 
dimension of the input vector. In hidden layers, each neuron is 
fully connected to the neurons in the previous layer by weights 
and biases. The output of a neuron in the hidden layer is the 
weighted and biased sum of the output of the previous layer 
processed by a non-linear activation function σ(·). For the ith 
hidden layer, its output vector ui is calculated as 

 1( )i i i i  u W u b ,  (9) 

where ui-1 is the output of the i−1th layer. Wi is the weight 
matrix of the ith layer with its elements wlk being the weight 
connecting the kth neuron in the i−1th layer and the lth neuron in 
the ith layer. bi is the bias vector of the ith layer with its 
elements bl being the bias of the lth neuron in the ith layer. The 
output layer is fully connected to the last hidden layer and 
generates the output of the whole neural network. 

In this study, the FNN is trained as a classifier, taking the 
current and target end effector poses as the network input and 
predicting the iteration result of the input case using different 
task priority settings. The FNN consists of an input layer, three 
hidden layers each containing 30 neurons with the hyperbolic 
tangent function as the activation function (σ(·) = tanh(·)), and 
a softmax output layer with four output neurons, 
corresponding to four categories: 

#1) the manipulator can reach the target pose with either linear 
or angular velocities as the primary task; 

#2) the manipulator can reach the target pose only with the 
linear velocity as the primary task; 

#3) the manipulator can reach the target pose only with the 
angular velocity as the primary task; 

#4) the manipulator cannot reach the target pose with either 
linear or angular velocities as the primary task. 

The input consists of two SE(3) poses and typically has 12 
elements. However, using kinematic properties of the 
continuum manipulator, the input dimension can be reduced as 
described below.  

Since configuration variables φ, δ1 and δ2 are not limited, 
the workspace of the manipulator is rotationally symmetric 
about the axis of the base stem. Moreover, the rotation around 
the end effector axis can be independently generated by φ, δ1 
and δ2 without changing the shape of the manipulator, and 
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does not affect the convergence of the position and pointing 
direction of the end effector in the resolved motion rate control. 
Therefore, the FNN only concerns about the 2-dimensional 
pointing direction of the end effector. 

A fixed world coordinate {w} is defined such that its origin 
coincides with the trocar exit and its ˆ wz  axis aligns with the 
trocar axis. The current and target positions with respect to {w} 
are denoted by wpc = [wpcx wpcy wpcz]T and wpt = [wptx wpty wptz]T, 
respectively. The directions of the current and target end 
effector axes with respect to {w} are denoted by wac = [wacx 
wacy wacz]T and wat = [watx waty watz]T, respectively.  

Since the workspace is rotationally symmetric, rotating the 
current and target poses around ˆ wz  does not affect the 

iteration result. A coordinate {s} is defined for each target 
pose by rotating {w} around ˆ wz  for an angle γ = 
arctan(wpty/wptx) such that the XZ-plane of {s} contains wpt, as 
shown in Fig. 4(a). The current and target positions as well as 
the end effector directions are represented in {s} as: 

 
ˆ ˆRot( , ) , Rot( , ) ,

ˆ ˆRot( , ) , Rot( , ) .

s w s w
c c c c

s w s w
t t t t

 
 

   
   

p z p a z a

p z p a z a
  (10) 

where Rot( ẑ ,−γ) is the rotation matrix around ẑ  for an angle 
−γ, and spty = 0. Then spty can be removed from the input 
vector. 

 
Figure 4.  (a) Definition of coordinate {s} and the mirrored current pose, 
and (b) spherical coordinate representation of the end effector direction. 

Furthermore, due to the symmetry of the workspace, 
mirroring the current and target poses about the XZ-plane of 
{s} does not affect the iteration results. If the current position 
is on the negative side of the ˆ sy  axis, the current and target 
poses are mirrored about the XZ-plane of {s} as in (11). This 
mirroring reduces the range of the current end effector 
position and facilitates the training of the FNN. 

, sgn( ) , sgn( )s s s s s s s s
cy cy cy cy cy ty cy typ p a p a a p a   . (11) 

After the mirroring, the end effector directions are 
represented in spherical coordinates as shown in Fig. 4(b): 

 
arctan( ), arccos( ),

arctan( ), arccos( ).

s s s
c cy cx c cz

s s s
t ty tx t tz

a a a

a a a

 
 

 
 

  (12) 

The input of the neural network vin is hence reduced to a 
9-dimensional vector given as in (13). To avoid saturation of 
the tanh function, the input is normalized by projecting each 
element to the interval [−1,1]. 

 
Ts s s s s

in cx cy cz c c tx tz t tp p p p p      v . (13) 

B. Data Generation, Preprocessing, and Network Training 

The data set for network training is generated as follows. 
125,000 poses are generated for each configuration by 
randomly assigning values to the configuration variables 
within the allowed ranges and calculating the forward 
kinematics. Then a total of 500,000 poses from the four 
configurations are randomly arranged to generate the initial 
and the target poses for the training cases. The IK for the target 
poses is solved twice from the corresponding initial 
configurations using the prioritized resolved motion rate 
configuration transition control described in Section II.D, with 
the linear and the angular velocities as the primary task, 
respectively. The proportional gains for the end effector twist 
are set as kv = 10 and kw = 8. The IK successfully converges 
when the position error is less than 0.1 mm, the orientation 
error is less than 0.02 rad, and the iteration number is less than 
200. The results are classified into four categories described in 
Section III.A as the desired output of the FNN. 

Among the 500,000 cases, category #1 contains 442,673 
cases, category #2 contains 29,507 cases, category #3 contains 
22,483 cases, and category #4 contains 5,337 cases. To keep 
the balance of the training data set, 25,995 cases (average 
number of cases in category #2 and #3) are randomly selected 
from category #1 and other cases in category #1 are discarded. 
Also, the cases in category #4 are repeated 5 times (a total of 
26,685 cases). Note that this repeat puts larger weights on the 
accuracy over category #4, which is desirable since it is more 
important to detect a case that fails in both priority settings and 
further adjust the end effector twist. After the preprocessing, 
the data set contains a total of 104,670 cases. The data set is 
randomly arranged into a training set (70%), a validation set 
(15%), and a test set (15%). The training set is used to train the 
FNN, with the validation set for early stop to avoid overfitting 
and the test set for evaluating the network performance. 

The performance of the FNN is assessed by the cross 
entropy, and the training algorithm is scaled conjugate 
gradient. The training stops when either the cross entropy on 
the validation set does not decrease for 30 consecutive epochs 
or the number of epochs reaches the maximum number of 
1,000. The training process eventually stopped at the 1,000th 
epoch and took 318 s using the Matlab deep learning toolbox 
on an Nvidia Geforce GTX1050 GPU. The training history is 
shown in Fig. 5, and the accuracy of the trained FNN on the 
test set is shown in Table II. The FNN achieved 93.4% overall 
accuracy in classification on the test set. 

 
Figure 5.  Performance history of the FNN during the training process. 
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TABLE II.  FNN ACCURACY ON THE TEST SET 

Number 
of cases 

Ground truth category 
Accuracy 

#1 #2 #3 #4 

O
ut

pu
t 

ca
te

go
ry

 #1 3486 34 64 13 96.9% 

#2 156 4134 20 172 92.2% 

#3 236 4 3227 28 92.3% 

#4 19 246 50 3812 92.4% 

Accuracy 89.5% 93.6% 96.0% 94.7% 93.4% 

 

C. FNN Assisted Resolved Motion Rate Control 

The trained FNN is used to determine the task priority at 
each iteration during the resolved motion rate control. When 
the combination of the current and target pose is classified as 
category #1 or #2, the linear velocity is chosen as the primary 
task; when the combination is classified as category #3, the 
angular velocity is chosen as the primary task. Since there are 
still 5,337 cases in the data set that cannot be solved by 
altering the task priority, the end effector twist is further 
adjusted. To determine the proper end effector twists for cases 
in category #4, different combinations of linear and angular 
velocities as well as the task priorities were tested on category 
#4. The highest success rate was achieved by setting kv = 10, 
kw = 32, with the angular velocity as the primary task, where 
only 1384 cases fail to converge (0.28% of the 500,000 cases). 
Therefore, this setting is used for category #4.  

The FNN assisted control framework is shown in Fig. 6. 
From the target pose, the position and orientation errors of the 
current pose are calculated. The task priority and values of the 
end effector twist are adjusted according to the classification 
given by the FNN. Then the configuration velocity is 
calculated by (7) and (8), and the configuration variables are 
updated. The configuration transition is conducted if triggered 
as described in Section II.C. And the current pose is updated 
by calculating the forward kinematics. The iteration continues 
until the errors are smaller than the error thresholds or the 
number of iterations exceeds the allowed number (200). 

 
Figure 6.  FNN assisted resolved motion rate control framework. 

IV. NUMERICAL SIMULATION 

The proposed method was tested in numerical simulations 
and compared to the original configuration transition control. 
The simulation was conducted on a total of 500,000 test cases 
generated in the same way as described in Section III.B. 

The proposed method achieved 99.18% success rate 
(4,078 failed cases) on the test cases, showing an improved 
performance compared to the 94.36% success rate (28,211 
failed cases) when the linear velocity is chosen as the primary 
task using the original method, and 92.34% success rate 
(38,303 failed cases) when the angular velocity is chosen as 
the primary task using the original method. Two 
representative cases are analyzed as follows. 

A. Case Study 1 

This case starts in C2 with the target pose in C3 whose 
position is lower than the initial position in the z-direction. 
The original method used the linear velocity as the primary 
task, and was stuck at the boundary between C1 and C2, as 
indicated by the red arrow in Fig. 7(a). In C1, reducing the 
position error requires extending and bending the segment #2, 
which drives the manipulator into C2. However, in C2, the 
position error cannot be further reduced by bending segment 
#2, and the manipulator has to retract the rigid stem to reduce 
the position error, leading the configuration back to C1. By 
contrast, in the proposed method, the FNN first recognized 
that the target pose cannot be reached by only altering task 
priority (category #4 as shown in Fig. 7(b)) and therefore set 
the angular velocity as the primary task with kv = 10 and kw = 
32. The relatively large velocity drives the manipulator to 
extend the rigid stem and enter C3, as indicated by the dotted 
arrows in Fig. 7(a). From the configuration in C3, the end 
effector is more likely to converge to the target pose since the 
manipulator need not go through C1 or C2 with a reduced 
motion capability. Then, the FNN classified the current pose 
as category #2 and set the linear velocity as the primary task. 

 
Figure 7.  Case 1: (a) Visualization of the converging history. (b) History of 
the position and orientation errors of the two methods. 

Target pose 
pt, Rt 

Session start 

Session end 

Calculate 
eP and eR 

||eP||,||eR|| ≤ Thresholds 
or #iteration > 200 

Obtain v and ω 
via (7) 

Obtain 
configuration 

velocity via (8) 

Current pose 
pc, Rc 

 

Yes 

No 

Update 

j j jdt ψ ψ ψ

& configuration 
transition  

forward 
kinematics 

FNN 
vin 

Select task 
priority and kw 

accroding to the 
FNN output 

softmax 
classification 

Initial pose 

(a) 

(b) 

Converged pose of 
the original method 

Converged (target) pose 
of the proposed method 

C2 C3 C4 

#4 #2 #1 

Converging history of 
the proposed method 

C3 

#2 

FNN 
output 

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

621Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore.  Restrictions apply. 



  

B. Case Study 2 

The second case starts from C2 with the target pose in C3. 
The original method used the angular velocity as the primary 
task, and eventually converged to a pose that has the same 
orientation as the target pose but is still stuck in C2 with a 
position error around 82 mm, indicated by the red arrow in Fig. 
8(a). As the priority of the angular velocity was enforced, the 
orientation converged before the position. Since the end 
effector position and orientation of the continuum manipulator 
are highly coupled, further reducing the position error would 
increase the orientation error, which is prohibited by the 
prioritized control scheme. By contrast, in the proposed 
method, the FNN first classified the case as in category #2, 
which means that the manipulator can only converge to the 
target pose by setting the linear velocity as the primary task. 
Then the task priority was altered and the manipulator 
converged to the target pose, despite a temporary increase in 
the orientation error as shown in Fig. 8(b). 

 
Figure 8.  Case 2: (a) Visualization of the converging history. (b) History of 
the position and orientation errors of the two methods. 

V. CONCLUSION 

The configuration transition IK for continuum 
manipulators often fails in the configurations with reduced 
kinematic capability. To address this problem, this paper 
proposes to regulate the converging trajectory of the 
manipulator by properly setting the priority and value of the 
linear and angular velocities in real time. A data set is 
generated by calculating configuration transition IK using 
either the linear or angular velocity as the primary task. Based 
on the data set, an FNN is trained as a classifier to determine 
the task priority and the end effector twist setting during the 
entire resolved motion rate control process. The proposed 
method is compared to the original configuration transition 
control via extensive numerical simulations, showing that the 

proposed method achieved a higher success rate while solving 
the IK problem (success rates of 99.18% v.s. 94.36% and 
92.34%). 

REFERENCES 
[1] A. Cuschieri, "Laparoscopic Surgery: Current Status, Issues and 

Future Developments," The Surgeon, Vol. 3, No.3, pp. 125-138, June 
2005. 

[2] C. Bergeles and G.-Z. Yang, "From Passive Tool Holders to 
Microsurgeons: Safer, Smaller, Smarter Surgical Robots," IEEE 
Transactions on Biomedical Engineering, Vol. 61, No.5, pp. 
1565-1576, May 2014. 

[3] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, "Continuum Robots 
for Medical Applications: A Survey," IEEE Transactions on Robotics, 
Vol. 31, No.6, pp. 1261-1280, Dec 2015. 

[4] J. Ding, K. Xu, R. Goldman, P. K. Allen, D. L. Fowler, and N. Simaan, 
"Design, Simulation and Evaluation of Kinematic Alternatives for 
Insertable Robotic Effectors Platforms in Single Port Access Surgery," 
in IEEE International Conference on Robotics and Automation 
(ICRA), Anchorage, Alaska, USA, 2010, pp. 1053-1058. 

[5] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, "Design and Control 
of Concentric-Tube Robots," IEEE Transactions on Robotics, Vol. 26, 
No.2, pp. 209-225, April 2010. 

[6] Y.-J. Kim, S. Cheng, S. Kim, and K. Iagnemma, "A 
Stiffness-Adjustable Hyperredundant Manipulator Using a Variable 
Neutral-Line Mechanism for Minimally Invasive Surgery," IEEE 
Transactions on Robotics, Vol. 30, No.2, pp. 382-395, April 2014. 

[7] K. Xu, J. Zhao, and M. Fu, "Development of the SJTU Unfoldable 
Robotic System (SURS) for Single Port Laparoscopy," IEEE/ASME 
Transactions on Mechatronics, Vol. 20, No.5, pp. 2133-2145, Oct 
2015. 

[8] K. Xu, J. Zhao, and X. Zheng, "Configuration Comparison among 
Kinematically Optimized Continuum Manipulators for Robotic 
Surgeries through a Single Access Port," Robotica, Vol. 33, No.10, pp. 
2025-2044, Dec 2015. 

[9] S. a. Zhang, Q. Li, H. Yang, J. Zhao, and K. Xu, "Configuration 
Transition Control of a Continuum Surgical Manipulator for Improved 
Kinematic Performance," IEEE Robotics and Automation Letters, Vol. 
4, No.4, pp. 3750-3757, Oct 2019. 

[10] D. E. Whitney, "Resolved Motion Rate Control of Manipulators and 
Human Prostheses," IEEE Transactions on Man-Machine Systems, 
Vol. 10, No.2, pp. 47-53, June 1969. 

[11] M. Rolf and J. J. Steil, "Efficient Exploratory Learning of Inverse 
Kinematics on a Bionic Elephant Trunk," IEEE Transactions on 
Neural Networks and Learning Systems, Vol. 25, No.6, pp. 1147-1160, 
Jun 2013. 

[12] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi, 
"Neural Network and Jacobian Method for Solving the Inverse Statics 
of a Cable-Driven Soft Arm with Nonconstant Curvature," IEEE 
Transactions on Robotics, Vol. 31, No.4, pp. 823-834, 2015. 

[13] T. G. Thuruthel, E. Falotico, M. Manti, A. Pratesi, M. Cianchetti, and 
C. Laschi, "Learning Closed Loop Kinematic Controllers for 
Continuum Manipulators in Unstructured Environments," Soft 
Robotics, Vol. 4, No.3, pp. 285-296, Sep 2017. 

[14] D. Braganza, D. M. Dawson, I. D. Walker, and N. Nath, "A Neural 
Network Controller for Continuum Robots," IEEE Transactions on 
Robotics and Automation, Vol. 23, No.5, Dec 2007. 

[15] Z. Wang, T. Wang, B. Zhao, Y. He, Y. Hu, B. Li, P. Zhang, and M. Q. 
H. Meng, "Hybrid Adaptive Control Strategy for Continuum Surgical 
Robot Under External Load," IEEE Robotics and Automation Letters, 
Vol. 6, No.2, pp. 1407-1414, 2021. 

[16] D. N. Nenchev, "Restricted Jacobian Matrices of Redundant 
Manipulators in Constrained Motion Tasks," The International 
Journal of Robotics Research, Vol. 11, No.6, pp. 584-597, 1992. 

 

Initial pose 

(a) 

(b) 

Converged pose of 
the original method 

Converged (target) pose 
of the proposed method 

C2 C1 C2 

#2 

FNN 
output 

#2 

Converging history of 
the proposed method 

C3 

#1 

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

622Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore.  Restrictions apply. 


