



Abstract—Continuum manipulators have been increasingly
used in surgical applications recently. A continuum surgical
manipulator can be controlled to perform useful tasks when
partially inserted into a patient’s cavity, enlarging the
workspace of the manipulator. During the insertion and
retraction, the inserted portion of the manipulator achieves
different configurations, and a configuration transition control
framework was proposed based on the resolved motion rate
control. However, the inverse kinematics (IK) under the
configuration transition framework suffers from failures from
time to time due to the reduced motion capability during
configuration transition. This paper hence proposes to improve
the IK performance of the configuration transition control with
the assistance of a feedforward neural network (FNN). During
the iteration to solve the IK, the priority and the value of linear
and angular velocities are adjusted by the FNN which takes the
current and target end effector poses as inputs. By properly
adjusting the task priority and the values of the end effector
twists, the converging trajectory of the manipulator is regulated
to reduce the cases of being trapped in local minima. Numerical
simulations were carried out to validate the proposed method.
The results show that the proposed method achieves a higher
success rate than the original configuration transition method.

I. INTRODUCTION

Minimally Invasive Surgery (MIS) offers benefits such as
less pain, quicker recovery, and lower postoperative
complication risks [1], while also posing challenges to the
surgeons. To address the operative challenges of MIS,
numerous robot-assisted surgical platforms have been
developed [2, 3]. Apart from articulated structures, continuum
mechanisms are promising candidates for robotic surgical
platforms [3] and are adopted in the designs of several surgical
manipulators [4-7], due to their dexterity, structural
compliance, and design compactness.

During surgical operations, a multi-segment continuum
surgical manipulator is usually fully inserted through a trocar
into a patient’s abdominal cavity, as shown in Fig. 1(d). In this
working pattern, an unreachable volume exists inside the
translational workspace of the manipulator, as investigated in
[8]. Nevertheless, a multi-segment continuum manipulator is

*This work was supported in part by the National Key R&D Program of

China (Grant No. 2017YFC0110800), in part by the National Natural
Science Foundation of China (Grant No. 51722507), and in part by the
Foundation of National Facility for Translational Medicine (Shanghai)
(Grant No. TMSK-2021-505).

Yifan Wang, Chuanxiang Zhu, Yue Ding and Kai Xu are with the State
Key Laboratory of Mechanical System and Vibration, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
(e-mails: fan_tasy@sjtu.edu.cn, zcx_sjtu@sjtu.edu.cn, dingyue2020@sjtu.
edu.cn, and k.xu@sjtu.edu.cn; corresponding author: Kai Xu).

Bo Feng is with Department of Surgery, Affiliated Ruijin Hospital,
Shanghai Jiao Tong University, Shanghai, China, 200025 (e-mail:
fengbo2022@163.com).

capable of performing surgical tasks even when partially
inserted, as shown in Fig. 1(a)-(c). Teleoperation in these
partially inserted configurations can extend the manipulator’s
overall motion capability, even though the motion capability
might be reduced in these configurations.

Figure 1. Different configurations of the multi-segment continuum surgical
manipulator: (a) the 1st configuration, (b) the 2nd configuration, (c) the 3rd
configuration, and (d) the 4th (fully inserted) configuration; (e) the
manipulator’s actuation scheme.

To realize the configuration transition control of a
continuum manipulator, a kinematics framework was
proposed previously [9]. Based on the resolved motion rate
control [10], this framework solves the inverse kinematics (IK)
under different configurations in a unified way. However, this
framework can still fail when the manipulator is controlled
among the partially inserted configurations, due to the reduced
kinematic capability in such configurations.

Feedforward neural network (FNN), as a widely adopted
supervised learning architecture, has been used in solving the
IK and inverse statics problems of continuum manipulators
[11-13]. The FNN usually consists of neurons that are
connected by weights and biases and map the inputs to the
outputs by nonlinear functions. By training the FNN using
labeled data sets, the weights and biases are adjusted such that
the FNN can approximate complex functions. Taking
advantage of the universal approximation capability of the
FNN, the nonlinear IK problem of the continuum manipulator
can be quickly solved by the FNN after proper training. On the

Feedforward Neural Network Assisted Configuration Transition
Control of Continuum Surgical Manipulators

Yifan Wang, Chuanxiang Zhu, Yue Ding, Bo Feng and Kai Xu, Member, IEEE

Rigid stem

Segment #1

Base stem

Axial rotation

Trocar

The 1st config The 3rd config The 4th config

Segment #2

(d) (a) (b) (c)

Segment #2

The 4th config

The 2nd config

Axial rotation

Trocar

22 0L L

22 0L L

Feeding Linear Actuator

Actuation Unit

11 0L L

11 0L L



(e)

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

978-1-6654-3153-8/21/$31.00 ©2021 IEEE 617

20
21

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ec

ha
tro

ni
cs

 a
nd

 M
ac

hi
ne

 V
is

io
n

in
 P

ra
ct

ic
e

(M
2V

IP
) |

 9
78

-1
-6

65
4-

31
53

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

2V
IP

49
85

6.
20

21
.9

66
50

66

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

other hand, FNN can be used to construct nonlinear motion
controllers and assist in the control of multi-segment
continuum manipulators, accounting for uncertainties in the
robot dynamics and the external disturbance [14, 15].

Inspired by the applications of the FNN in robot control,
this paper proposes to improve the success rate of the
configuration transition IK of a 2-segment continuum surgical
manipulator. An FNN is used to predict the iteration result of
the resolved motion rate method under different priorities
between the linear and angular velocity. The task priority and
the value of the end effector twists (i.e., linear and angular
velocities) are adjusted according to the FNN prediction
during iterations. This helps to regulate the converging
trajectory and reduce the cases of being trapped in local
minima. The effectiveness of the proposed method is validated
using numerical simulations.

The rest of this paper is organized as follows. Section II
defines the configurations of the manipulator, while the neural
network assisted control framework is elaborated in Section
III. Numerical simulation results are presented in Section IV
with the conclusions summarized in Section V.

II. KINEMATICS NOMENCLATURE AND CONFIGURATION

TRANSITION CONTROL

A. Kinematics Nomenclature

Based on the constant curvature assumption, the modeling
of a single continuum segment is shown in Fig. 2, while the
nomenclatures are listed in Table I. The kinematics of the
manipulator can be referred to [9].

TABLE I. NOMENCLATURE USED IN THE KINEMATICS MODEL

Symbol Definition

t Index of the segments. t = 1, 2.

j Index of the configurations. j = 1, 2, 3, 4.

Lt, Lt0 Inserted length and the full length of the tth segment.

Lr, Lr0 Inserted length and the full length of the rigid stem.

Ls, Ls0 Inserted length and the full length of the base stem.

θt Bending angle of the tth continuum segment.

δt Bending direction angle of the tth continuum segment.

φ Axial rotation realized by the actuation unit.

v, ω Desired linear and angular velocity of the end effector.

ψj
The configuration variable vector of the manipulator in
the jth configuration.

Jj
 The manipulator’s Jacobian matrix in its jth configuration.

Jjv, Jjω
 Jacobian matrices of the tip velocity and angular velocity

in the jth configuration.

Figure 2. Kinematics modeling of the tth bending segment.

B. Configuration Definition

The manipulator has two inextensible continuum segments
with a rigid straight stem in between. The segment #1 is
stacked on a base stem, as shown in Fig. 1(d). The manipulator
is mounted onto an actuation unit, which provides rotation
about and translation along its axis, as shown in Fig. 1(e).

When an inextensible bending segment is partially inserted,
the inserted portion is kinematically treated as possessing 3
DoFs: 2-DoF bending and 1-DoF length changing. This
insertion process hence leads to 4 configurations as follows.

 The 1st Configuration (C1): the segment #2 is partially
inserted as shown in Fig. 1(a). The manipulator has 4 DoFs:
axial rotation, length changing, and 2-DoF bending of the
segment #2. The configuration verctor is ψ1 = [φ θ2 L2 δ2]T.

 The 2nd Configuration (C2): the rigid stem is partially
inserted as in Fig. 1(b). The manipulator has 4 DoFs: axial
rotation and feeding of the rigid stem, as well as 2-DoF
bending of the segment #2. The configuration vector is ψ2
= [φ Lr θ2 δ2]T.

 The 3rd Configuration (C3): the segment #1 is partially
inserted as in Fig. 1(c). The manipulator has 6 DoFs:
2-DoF bending of the segment #2, as well as axial rotation,
length changing and 2-DoF bending of the segment #1.
The configuration vector is ψ3 = [φ θ1 L1 δ1 θ2 δ2]T.

 The 4th Configuration (C4): the base stem is partially
inserted as in Fig. 1(d). The manipulator has 6 DoFs:
2-DoF bending of for each of the segment #1 and #2, as
well as axial rotation and feeding of the base stem. The
configuration vector is ψ4 = [φ Ls θ1 δ1 θ2 δ2]T.

C. Configuration Transition

The configuration transition is triggered when a length
variable exceeds its limit during the insertion of the
manipulator. The triggering variables for the configuration
transition are summarized in Fig. 3, while the strategies are
explained as follows.

 Between C1 and C2: the manipulator configuration with L2
= L20 in C1 is identical to that with Lr = 0 in C2. The
transition from C1 to C2 is triggered when L2 is updated
longer than L20. The overshoot of L2 (excess value after
one update) in C1 is set to Lr in C2:

 2 2 1 20() ()r C CL L L  . (1)

The transition from C2 to C1 is triggered when Lr is
updated less than 0. The overshoot of Lr (a negative value)
in C2 is set to L2 in C1:

 2 1 2 20() ()C r CL L L  . (2)

 Between C2 and C3: the manipulator configuration with Lr
= Lr0 in C2 is identical to that with L1 = 0 in C3. The
transition from C2 to C3 is triggered when Lr is updated
longer than Lr0. The overshoot of Lr in C2 is set to L1 in C3:

 1 3 2 0() ()C r C rL L L  . (3)

The transition from C3 to C2 is triggered when L1 is
updated less than 0. The overshoot of L1 (a negative value)
in C3 is set to Lr in C2:

x̂

ŷ

ẑ

t

t

tL

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

618Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

 2 1 3 0() ()r C C rL L L  . (4)

 Between C3 and C4: the manipulator configuration with L1
= L10 in C3 is identical to that with Ls = 0 in C4. The
transition from C3 to C4 is triggered when L1 is updated
longer than L10. The overshoot of L1 in C3 is set to Ls in C4:

 4 3 101() ()s C CL L L  . (5)

The transition from C4 to C3 is triggered when Ls is
updated less than 0. The overshoot of Ls (a negative value)
in C4 is set to L1 in C3:

 3 4 101() ()C s CL L L  . (6)

After a configuration transition, the configuration
variables other than the length variables are inherited from the
previous configuration.

Figure 3. The variables and constants of the manipulator and the transition
conditions between the adjacent configurations.

D. Prioritized Resolved Motion Rate Control

The resolved motion rate control [10] iteratively updates
the configuration variables by using the Jacobian to achieve
the desired end effector twist, which is obtained as:

 v P

w R

k

k

  
    
   

ev
x

eω
 , (7)

where eP and eR denote the position and orientation error to the
target pose, respectively, while kv and kw are proportional
gains. In Configuration C1 and C2, the manipulator only
possesses 4 DoFs and may not always be able to reach a
desired position and orientation at the same time. Therefore,
the linear and angular velocities are separately treated, with
one of them chosen as the primary task and the other as the
secondary task. The priority is handled by the null space
projection method as in (8) [16]:

 (()) ()j jp p js jp jp s js jp p
      ψ J x J I J J x J J x    , (8)

where px and sx denote the primary and secondary tasks

(selecting from v and ω), respectively; Jjp and Jjs denote the
Jacobians of the primary and secondary tasks in the jth
configuration (selecting from Jjv and Jjω), respectively. J+
represents the Moore-Penrose pseudo-inverse of J.

III. FEEDFORWARD NEURAL NETWORK ASSISTED RESOLVED

MOTION RATE CONTROL

While solving the IK problem, the resolved motion rate
control method relies on the proper setting of the task priority
and the end effector twists to successfully converge. Improper
task priority or end effector twists can lead to local minima
while traversing multiple configurations, such as converging
to the target position with a different orientation [9]. To
alleviate this problem, an FNN is used to adaptively adjust the
priority and values of the end effector twist based on the
current and target end effector poses.

A. Feedforward Neural Network

An FNN consists of several layers of processing units
called neurons, including an input layer, several hidden layers,
and an output layer. The input layer takes an input vector into
the neural network, with the number of neurons equal to the
dimension of the input vector. In hidden layers, each neuron is
fully connected to the neurons in the previous layer by weights
and biases. The output of a neuron in the hidden layer is the
weighted and biased sum of the output of the previous layer
processed by a non-linear activation function σ(·). For the ith
hidden layer, its output vector ui is calculated as

 1()i i i i  u W u b , (9)

where ui-1 is the output of the i−1th layer. Wi is the weight
matrix of the ith layer with its elements wlk being the weight
connecting the kth neuron in the i−1th layer and the lth neuron in
the ith layer. bi is the bias vector of the ith layer with its
elements bl being the bias of the lth neuron in the ith layer. The
output layer is fully connected to the last hidden layer and
generates the output of the whole neural network.

In this study, the FNN is trained as a classifier, taking the
current and target end effector poses as the network input and
predicting the iteration result of the input case using different
task priority settings. The FNN consists of an input layer, three
hidden layers each containing 30 neurons with the hyperbolic
tangent function as the activation function (σ(·) = tanh(·)), and
a softmax output layer with four output neurons,
corresponding to four categories:

#1) the manipulator can reach the target pose with either linear
or angular velocities as the primary task;

#2) the manipulator can reach the target pose only with the
linear velocity as the primary task;

#3) the manipulator can reach the target pose only with the
angular velocity as the primary task;

#4) the manipulator cannot reach the target pose with either
linear or angular velocities as the primary task.

The input consists of two SE(3) poses and typically has 12
elements. However, using kinematic properties of the
continuum manipulator, the input dimension can be reduced as
described below.

Since configuration variables φ, δ1 and δ2 are not limited,
the workspace of the manipulator is rotationally symmetric
about the axis of the base stem. Moreover, the rotation around
the end effector axis can be independently generated by φ, δ1
and δ2 without changing the shape of the manipulator, and

0rL 

2 20L L

1 0L  0sL 

0r rL L 1 10L L
2

2

2

rL







 
 
 
 
  

ψ 3

1

1

2

2

1L











 
 
 
 
 
 
 
 

ψ

1

1

2

2

4

sL









 
 
 
 
 
 
 
 

ψ
C2

1

1

1

0
0
0
0
0

s

r

L

L

L











1

2

2

2L








 
 
 
 
  

ψ

1

1

202

1

0
0
0
0

sL

L

L L











0

2 20

0s

rr

L
L L
L L





101

2

0

20

rr

L L
L L
L L





Variables in vectors Constants L Triggering variable

C1 C3 C4

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

619Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

does not affect the convergence of the position and pointing
direction of the end effector in the resolved motion rate control.
Therefore, the FNN only concerns about the 2-dimensional
pointing direction of the end effector.

A fixed world coordinate {w} is defined such that its origin
coincides with the trocar exit and its ˆ wz axis aligns with the
trocar axis. The current and target positions with respect to {w}
are denoted by wpc = [wpcx wpcy wpcz]T and wpt = [wptx wpty wptz]T,
respectively. The directions of the current and target end
effector axes with respect to {w} are denoted by wac = [wacx
wacy wacz]T and wat = [watx waty watz]T, respectively.

Since the workspace is rotationally symmetric, rotating the
current and target poses around ˆ wz does not affect the

iteration result. A coordinate {s} is defined for each target
pose by rotating {w} around ˆ wz for an angle γ =
arctan(wpty/wptx) such that the XZ-plane of {s} contains wpt, as
shown in Fig. 4(a). The current and target positions as well as
the end effector directions are represented in {s} as:

ˆ ˆRot(,) , Rot(,) ,

ˆ ˆRot(,) , Rot(,) .

s w s w
c c c c

s w s w
t t t t

 
 

   
   

p z p a z a

p z p a z a
 (10)

where Rot(ẑ ,−γ) is the rotation matrix around ẑ for an angle
−γ, and spty = 0. Then spty can be removed from the input
vector.

Figure 4. (a) Definition of coordinate {s} and the mirrored current pose,
and (b) spherical coordinate representation of the end effector direction.

Furthermore, due to the symmetry of the workspace,
mirroring the current and target poses about the XZ-plane of
{s} does not affect the iteration results. If the current position
is on the negative side of the ˆ sy axis, the current and target
poses are mirrored about the XZ-plane of {s} as in (11). This
mirroring reduces the range of the current end effector
position and facilitates the training of the FNN.

, sgn() , sgn()s s s s s s s s
cy cy cy cy cy ty cy typ p a p a a p a   . (11)

After the mirroring, the end effector directions are
represented in spherical coordinates as shown in Fig. 4(b):

arctan(), arccos(),

arctan(), arccos().

s s s
c cy cx c cz

s s s
t ty tx t tz

a a a

a a a

 
 

 
 

 (12)

The input of the neural network vin is hence reduced to a
9-dimensional vector given as in (13). To avoid saturation of
the tanh function, the input is normalized by projecting each
element to the interval [−1,1].

Ts s s s s

in cx cy cz c c tx tz t tp p p p p      v . (13)

B. Data Generation, Preprocessing, and Network Training

The data set for network training is generated as follows.
125,000 poses are generated for each configuration by
randomly assigning values to the configuration variables
within the allowed ranges and calculating the forward
kinematics. Then a total of 500,000 poses from the four
configurations are randomly arranged to generate the initial
and the target poses for the training cases. The IK for the target
poses is solved twice from the corresponding initial
configurations using the prioritized resolved motion rate
configuration transition control described in Section II.D, with
the linear and the angular velocities as the primary task,
respectively. The proportional gains for the end effector twist
are set as kv = 10 and kw = 8. The IK successfully converges
when the position error is less than 0.1 mm, the orientation
error is less than 0.02 rad, and the iteration number is less than
200. The results are classified into four categories described in
Section III.A as the desired output of the FNN.

Among the 500,000 cases, category #1 contains 442,673
cases, category #2 contains 29,507 cases, category #3 contains
22,483 cases, and category #4 contains 5,337 cases. To keep
the balance of the training data set, 25,995 cases (average
number of cases in category #2 and #3) are randomly selected
from category #1 and other cases in category #1 are discarded.
Also, the cases in category #4 are repeated 5 times (a total of
26,685 cases). Note that this repeat puts larger weights on the
accuracy over category #4, which is desirable since it is more
important to detect a case that fails in both priority settings and
further adjust the end effector twist. After the preprocessing,
the data set contains a total of 104,670 cases. The data set is
randomly arranged into a training set (70%), a validation set
(15%), and a test set (15%). The training set is used to train the
FNN, with the validation set for early stop to avoid overfitting
and the test set for evaluating the network performance.

The performance of the FNN is assessed by the cross
entropy, and the training algorithm is scaled conjugate
gradient. The training stops when either the cross entropy on
the validation set does not decrease for 30 consecutive epochs
or the number of epochs reaches the maximum number of
1,000. The training process eventually stopped at the 1,000th
epoch and took 318 s using the Matlab deep learning toolbox
on an Nvidia Geforce GTX1050 GPU. The training history is
shown in Fig. 5, and the accuracy of the trained FNN on the
test set is shown in Table II. The FNN achieved 93.4% overall
accuracy in classification on the test set.

Figure 5. Performance history of the FNN during the training process.

(a)

(b)



t

t ta

ˆ sy ˆ syˆ wy

ˆ sz

ˆ sx

ˆ sz

ˆ wz

ˆ sx

ˆ wx

ca

ca

ta

Mirrored shape Target pose

Current shape

tp

ta

0.0127

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

620Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II. FNN ACCURACY ON THE TEST SET

Number
of cases

Ground truth category
Accuracy

#1 #2 #3 #4

O
ut

pu
t

ca
te

go
ry

 #1 3486 34 64 13 96.9%

#2 156 4134 20 172 92.2%

#3 236 4 3227 28 92.3%

#4 19 246 50 3812 92.4%

Accuracy 89.5% 93.6% 96.0% 94.7% 93.4%

C. FNN Assisted Resolved Motion Rate Control

The trained FNN is used to determine the task priority at
each iteration during the resolved motion rate control. When
the combination of the current and target pose is classified as
category #1 or #2, the linear velocity is chosen as the primary
task; when the combination is classified as category #3, the
angular velocity is chosen as the primary task. Since there are
still 5,337 cases in the data set that cannot be solved by
altering the task priority, the end effector twist is further
adjusted. To determine the proper end effector twists for cases
in category #4, different combinations of linear and angular
velocities as well as the task priorities were tested on category
#4. The highest success rate was achieved by setting kv = 10,
kw = 32, with the angular velocity as the primary task, where
only 1384 cases fail to converge (0.28% of the 500,000 cases).
Therefore, this setting is used for category #4.

The FNN assisted control framework is shown in Fig. 6.
From the target pose, the position and orientation errors of the
current pose are calculated. The task priority and values of the
end effector twist are adjusted according to the classification
given by the FNN. Then the configuration velocity is
calculated by (7) and (8), and the configuration variables are
updated. The configuration transition is conducted if triggered
as described in Section II.C. And the current pose is updated
by calculating the forward kinematics. The iteration continues
until the errors are smaller than the error thresholds or the
number of iterations exceeds the allowed number (200).

Figure 6. FNN assisted resolved motion rate control framework.

IV. NUMERICAL SIMULATION

The proposed method was tested in numerical simulations
and compared to the original configuration transition control.
The simulation was conducted on a total of 500,000 test cases
generated in the same way as described in Section III.B.

The proposed method achieved 99.18% success rate
(4,078 failed cases) on the test cases, showing an improved
performance compared to the 94.36% success rate (28,211
failed cases) when the linear velocity is chosen as the primary
task using the original method, and 92.34% success rate
(38,303 failed cases) when the angular velocity is chosen as
the primary task using the original method. Two
representative cases are analyzed as follows.

A. Case Study 1

This case starts in C2 with the target pose in C3 whose
position is lower than the initial position in the z-direction.
The original method used the linear velocity as the primary
task, and was stuck at the boundary between C1 and C2, as
indicated by the red arrow in Fig. 7(a). In C1, reducing the
position error requires extending and bending the segment #2,
which drives the manipulator into C2. However, in C2, the
position error cannot be further reduced by bending segment
#2, and the manipulator has to retract the rigid stem to reduce
the position error, leading the configuration back to C1. By
contrast, in the proposed method, the FNN first recognized
that the target pose cannot be reached by only altering task
priority (category #4 as shown in Fig. 7(b)) and therefore set
the angular velocity as the primary task with kv = 10 and kw =
32. The relatively large velocity drives the manipulator to
extend the rigid stem and enter C3, as indicated by the dotted
arrows in Fig. 7(a). From the configuration in C3, the end
effector is more likely to converge to the target pose since the
manipulator need not go through C1 or C2 with a reduced
motion capability. Then, the FNN classified the current pose
as category #2 and set the linear velocity as the primary task.

Figure 7. Case 1: (a) Visualization of the converging history. (b) History of
the position and orientation errors of the two methods.

Target pose
pt, Rt

Session start

Session end

Calculate
eP and eR

||eP||,||eR|| ≤ Thresholds
or #iteration > 200

Obtain v and ω
via (7)

Obtain
configuration

velocity via (8)

Current pose
pc, Rc

Yes

No

Update

j j jdt ψ ψ ψ

& configuration
transition

forward
kinematics

FNN
vin

Select task
priority and kw

accroding to the
FNN output

softmax
classification

Initial pose

(a)

(b)

Converged pose of
the original method

Converged (target) pose
of the proposed method

C2 C3 C4

#4 #2 #1

Converging history of
the proposed method

C3

#2

FNN
output

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

621Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

B. Case Study 2

The second case starts from C2 with the target pose in C3.
The original method used the angular velocity as the primary
task, and eventually converged to a pose that has the same
orientation as the target pose but is still stuck in C2 with a
position error around 82 mm, indicated by the red arrow in Fig.
8(a). As the priority of the angular velocity was enforced, the
orientation converged before the position. Since the end
effector position and orientation of the continuum manipulator
are highly coupled, further reducing the position error would
increase the orientation error, which is prohibited by the
prioritized control scheme. By contrast, in the proposed
method, the FNN first classified the case as in category #2,
which means that the manipulator can only converge to the
target pose by setting the linear velocity as the primary task.
Then the task priority was altered and the manipulator
converged to the target pose, despite a temporary increase in
the orientation error as shown in Fig. 8(b).

Figure 8. Case 2: (a) Visualization of the converging history. (b) History of
the position and orientation errors of the two methods.

V. CONCLUSION

The configuration transition IK for continuum
manipulators often fails in the configurations with reduced
kinematic capability. To address this problem, this paper
proposes to regulate the converging trajectory of the
manipulator by properly setting the priority and value of the
linear and angular velocities in real time. A data set is
generated by calculating configuration transition IK using
either the linear or angular velocity as the primary task. Based
on the data set, an FNN is trained as a classifier to determine
the task priority and the end effector twist setting during the
entire resolved motion rate control process. The proposed
method is compared to the original configuration transition
control via extensive numerical simulations, showing that the

proposed method achieved a higher success rate while solving
the IK problem (success rates of 99.18% v.s. 94.36% and
92.34%).

REFERENCES
[1] A. Cuschieri, "Laparoscopic Surgery: Current Status, Issues and

Future Developments," The Surgeon, Vol. 3, No.3, pp. 125-138, June
2005.

[2] C. Bergeles and G.-Z. Yang, "From Passive Tool Holders to
Microsurgeons: Safer, Smaller, Smarter Surgical Robots," IEEE
Transactions on Biomedical Engineering, Vol. 61, No.5, pp.
1565-1576, May 2014.

[3] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, "Continuum Robots
for Medical Applications: A Survey," IEEE Transactions on Robotics,
Vol. 31, No.6, pp. 1261-1280, Dec 2015.

[4] J. Ding, K. Xu, R. Goldman, P. K. Allen, D. L. Fowler, and N. Simaan,
"Design, Simulation and Evaluation of Kinematic Alternatives for
Insertable Robotic Effectors Platforms in Single Port Access Surgery,"
in IEEE International Conference on Robotics and Automation
(ICRA), Anchorage, Alaska, USA, 2010, pp. 1053-1058.

[5] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, "Design and Control
of Concentric-Tube Robots," IEEE Transactions on Robotics, Vol. 26,
No.2, pp. 209-225, April 2010.

[6] Y.-J. Kim, S. Cheng, S. Kim, and K. Iagnemma, "A
Stiffness-Adjustable Hyperredundant Manipulator Using a Variable
Neutral-Line Mechanism for Minimally Invasive Surgery," IEEE
Transactions on Robotics, Vol. 30, No.2, pp. 382-395, April 2014.

[7] K. Xu, J. Zhao, and M. Fu, "Development of the SJTU Unfoldable
Robotic System (SURS) for Single Port Laparoscopy," IEEE/ASME
Transactions on Mechatronics, Vol. 20, No.5, pp. 2133-2145, Oct
2015.

[8] K. Xu, J. Zhao, and X. Zheng, "Configuration Comparison among
Kinematically Optimized Continuum Manipulators for Robotic
Surgeries through a Single Access Port," Robotica, Vol. 33, No.10, pp.
2025-2044, Dec 2015.

[9] S. a. Zhang, Q. Li, H. Yang, J. Zhao, and K. Xu, "Configuration
Transition Control of a Continuum Surgical Manipulator for Improved
Kinematic Performance," IEEE Robotics and Automation Letters, Vol.
4, No.4, pp. 3750-3757, Oct 2019.

[10] D. E. Whitney, "Resolved Motion Rate Control of Manipulators and
Human Prostheses," IEEE Transactions on Man-Machine Systems,
Vol. 10, No.2, pp. 47-53, June 1969.

[11] M. Rolf and J. J. Steil, "Efficient Exploratory Learning of Inverse
Kinematics on a Bionic Elephant Trunk," IEEE Transactions on
Neural Networks and Learning Systems, Vol. 25, No.6, pp. 1147-1160,
Jun 2013.

[12] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
"Neural Network and Jacobian Method for Solving the Inverse Statics
of a Cable-Driven Soft Arm with Nonconstant Curvature," IEEE
Transactions on Robotics, Vol. 31, No.4, pp. 823-834, 2015.

[13] T. G. Thuruthel, E. Falotico, M. Manti, A. Pratesi, M. Cianchetti, and
C. Laschi, "Learning Closed Loop Kinematic Controllers for
Continuum Manipulators in Unstructured Environments," Soft
Robotics, Vol. 4, No.3, pp. 285-296, Sep 2017.

[14] D. Braganza, D. M. Dawson, I. D. Walker, and N. Nath, "A Neural
Network Controller for Continuum Robots," IEEE Transactions on
Robotics and Automation, Vol. 23, No.5, Dec 2007.

[15] Z. Wang, T. Wang, B. Zhao, Y. He, Y. Hu, B. Li, P. Zhang, and M. Q.
H. Meng, "Hybrid Adaptive Control Strategy for Continuum Surgical
Robot Under External Load," IEEE Robotics and Automation Letters,
Vol. 6, No.2, pp. 1407-1414, 2021.

[16] D. N. Nenchev, "Restricted Jacobian Matrices of Redundant
Manipulators in Constrained Motion Tasks," The International
Journal of Robotics Research, Vol. 11, No.6, pp. 584-597, 1992.

Initial pose

(a)

(b)

Converged pose of
the original method

Converged (target) pose
of the proposed method

C2 C1 C2

#2

FNN
output

#2

Converging history of
the proposed method

C3

#1

2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)

622Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 06,2022 at 02:34:33 UTC from IEEE Xplore. Restrictions apply.

