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a b s t r a c t 

Continuum manipulators can accomplish tasks in cluttered and unstructured environments 

due to their slenderness. Balancing the workspace and stiffness of the slender continuum 

manipulator is a primary design concern. Thus, studies have been consistently dedicated 

to designing continuum manipulators with high or variable stiffness. This paper proposes 

a 2-segment continuum manipulator with adjustable stiffness based on continuously con- 

strained bending curvature. The manipulator’s stiffness is further enhanced via redundant 

backbone arrangement using the concept of dual continuum mechanism during the de- 

sign phase. The Cosserat rod theory is used for the kinestatic model to calculate the tip 

stiffness of the manipulator. A stiffness control formulation utilizes the configuration re- 

dundancy of the manipulator to achieve stiffness variation control in a desired direction 

at a target position. The design concepts, system construction, kinestatic models, stiffness 

control formulation and experimental validations are presented. The experimental results 

showed that the tip stiffness of the manipulator can be adjusted in various directions with 

an enhancement up to 10.83 times of the minimal stiffness, indicating the efficacy of the 

proposed design and the stiffness control formulation. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Continuum manipulators, which possess either a continuum structure [1] or an articulated hyper-redundant verte-

bral structure [2] , have shown enhanced dexterity in confined environments and compliant interactions with objects. In

medicine, researchers have implemented surgical continuum manipulators with various structures and miniature sizes for

different applications. These manipulators can provide advanced instrumentation and be utilized to perform versatile tasks

in deep sites through natural orifices or small skin incisions [3] . In field operations, continuum manipulators have the abil-

ity to adaptively manipulate and perform a wide variety of tasks [4] . In confined industrial environments, they can perform

inspections and other tasks with various exchangeable end-effectors [5–7] . 

While designing a slender continuum manipulator, a tradeoff between workspace and stiffness should always be of pri-

mary consideration. In general, given a desired diameter, the slimmer the manipulator is, the larger the workspace and

lower the stiffness are. To enhance or adjust the stiffness, quite a few approaches have been described in recent works: 

• In friction-based approaches, the stiffness of the manipulator is essentially adjusted by varying the friction between

structural components. Methods for changing the friction include: (i) varying the tension of the actuation tendon
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Fig. 1. The 2–segment continuum manipulator: (a) different constrained curvatures overlaid with the same tip position, (b) simulated manipulators with 

the same tip position and different angles between the two segments’ bending planes, and (c) simulated manipulators with same tip position and different 

constrained curvatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[8–11] ; (ii) introducing particle jamming [12 , 13] and layer jamming [14] ; and (iii) applying locking mechanisms [15–17] .

Varying the tension does not increase the system complexity and facilitate the design compactness, while jamming can

substantially increase the stiffness. The friction-based approaches usually need little actuation time to vary the stiffness. 
• Continuum manipulators can be designed with active materials including magnetorheological fluids [18] , electrorheolog-

ical fluids [19] , shape memory alloys [20] , and thermally softened alloys or plastics [21–23] . The manipulator stiffness

can be improved by activating these materials. These methods can achieve stiffness variation ratios even up to a few

hundreds. 
• In approaches based on force sensing, a modified position controller drives a continuum manipulator into different poses

to control stiffness upon understanding its mechanics [24–26] . This stiffness variation can also be achieved by a stiffness

controller [27] by utilizing the manipulator’s intrinsic force sensing capabilities [28–30] . These active stiffness control

methods can adjust the stiffness precisely since the stiffness is calculated from on-line force sensing results. 

The friction-based approaches face the challenge of actuation hysteresis resulted from the intentionally introduced fric-

tion. While using active materials or the force sensing approaches, the additional hardware required for material activation

or sensing modalities increases the system complexity. In addition, the response can be slow for thermally activated mate-

rials with long switching times (on the order of seconds). 

Structural variation, such as by inserting stiffening com ponents [31] or integrating rigid components into the continuum

structure [32 , 33] , is another approach used to enhance or adjust the stiffness. This approach usually does not bring actua-

tion hysteresis because the inserted or integrated components only change the structure’s elastic bending behaviors. What’s

more, the inserted components are usually passive. It requires less change to the manipulator structures. Hence, this paper

presents a design of a continuum manipulator with continuously variable stiffness. As shown in Fig. 1 , the prototype is

formed by a 2-segment continuum arm and an actuation assembly. Continuously constrained bending curvature of the con-

tinuum segments is introduced to achieve stiffness adjustment, while the redundant backbone arrangement would further

enhance the manipulator’s stiffness during the design phase. 

To describe and control the stiffness of the proposed manipulator, a kinestatic model should be applied. Cosserat rod

theory is utilized to calculate the deflected shape and stiffness of the continuum manipulator. Then a stiffness control for-

mulation is proposed to drive the manipulator to the desired tip position and control its tip stiffness. In this particular

study, the tip stiffness is quantified as the stiffness along a specific direction, as in Table 1 in Section 4 . Since the 2-segment

manipulator possesses actuation redundancy for reaching a spatial point, the stiffness control formulation utilizes the re-

dundancy to control tip stiffness while reaching different tip positions by constraining each segment’s bending curvature

and varying the angle between the segments’ bending planes, as shown in Fig. 1 (b)–(c). 

The contributions of this paper are thus the design of the continuum manipulator and the stiffness control formulation.

The joint chain is the key design component that enables the overall idea. A preliminary version of this paper was presented

at a conference [34] . In this current paper, the kinestatic model and the entire stiffness control formulation are newly

proposed. Moreover, the experimental characterization results are reported to demonstrate the effectiveness of the proposed

design and stiffness control formulation. 

The findings in this paper can be applied to control or adjust the stiffness of the continuum manipulator to adapt to

different operating conditions. The continuum manipulator can reduce its stiffness to accomplish compliant insertions into

constrained environments. The low stiffness of the continuum manipulator can prevent damage to the environment and the

manipulator. When the manipulator is deployed, it needs enhanced stiffness to perform desired tasks. Hence, continuum

manipulators with adjustable stiffness can be more effective in a greater range of applications. 

The paper is organized as follows. The design concepts are introduced in Section 2 , while Section 3 shows the prototype

design and the system construction. The kinematic model is presented in Section 4 . Section 5 describes the Cosserat rod

theory and stiffness control formulation. Section 6 presents the experiments with the conclusions summarized in Section 7 .
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Table 1 

Nomenclature. 

Symbol Definition 

I Index of the curvature-constraining segments, i = = 1 or 2. 

J Index of the backbones, j = = 1, 2,…, 8. 

l bi Length of the i th curvature-constraining segment 

l ci Effective segment length (bent portion length) of the i th curvature-constraining segment 

l total Total length of the 2-segment manipulator: l total = l b 1 + l b2 

l r Length of the rigid portion of DS-2 

S Arc length along the virtual central backbone 

ρ i Radius of curvature of the bent portion of the i th curvature-constraining segment 

δi A right-handed rotation angle from ̂  y ip about ˆ x ic to a ray passing through the virtual central backbone and the first 

backbone 

δd δd = δ2 −δ1 is the angle between the two segments’ bending planes 

θ t Bending angle of the i th curvature-constraining segment 

ψ i ψ i ≡ [ θ i δi ρ i ] 
T is the configuration space of the i th curvature-constraining segment 

ψ ψ 

≡ [ ψ 1 
T ψ 2 

T ] T is the configuration space of the 2-segment manipulator 

ψ p ψ p ≡ [ θ 1 δ1 θ 2 ] 
T is the position control space of the 2-segment manipulator 

ψ s ψ s ≡ [ δd ρ1 ρ2 ] 
T is the stiffness control space of the 2-segment manipulator 

ψ c ψ c ≡ [ ψ p 
T ψ s 

T ] T is the control space of the 2-segment manipulator 
ib p ie , 

ib R ie Position and orientation of { ie } in { ib } obtained from the kinematics 
1b p targ et 

2 e 
Target tip position of the stiffness control formulation 

1b v 2 Linear velocity at the tip of the 2-segment manipulator 

v lim Tip velocity limit 

J i v ψ , J i ωψ Linear and angular velocity Jacobian matrices of the i th segment 

J v ψ , J v ψ c , J v ψ p , and J v ψ s Jacobian matrix of the 2-segment manipulator mapping ˙ ψ , ˙ ψ c , ˙ ψ p and ˙ ψ s to 1b v 2 , respectively 
s f s f = [ f α β] T is a virtually applied force at the manipulator’s tip for stiffness quantification, expressed in terms of 

spherical coordinates, where f is the magnitude, α is the inclination angle from ̂  z 1 b and β is the azimuth angle 

measured from ˆ x 1 b . 
1b f 1b f = [ f �sin( α) �cos( β) f �sin( α) �sin( β) f �cos( α)] T 

1 b 
f 

p (s ) , 1 b 
f 

R (s ) Deflected position and orientation of the 2-segment manipulator along its length s , due to the tip force 1b f 

v ( s ), u ( s ) Change rates of 1 b 
f 

p (s ) and 1 b 
f 

R (s ) along its length s 

m ( s ), n ( s ) Internal moment and force of a Cosserat rod 

K ( s ) Stiffness matrix of the constitutive model in the Cosserat rod theory relates u ( s ) to the internal moment m ( s ) 

k c , k b , k r Stiffness parameter vectors in the constrained, the bent and the rigid portions of the segment 
1 b 
f 

p 2e 
1 b 
f 

p 2e ≡ 1 b 
f 

p (l total ) is the deflected tip position of the 2-segment manipulator 
1 b d 1 b d = 

1 b 
f 

p 2 e − 1 b p 2e is the tip deflection resulted from the external force 1 b f 

k ( ψ, α, β) tip stiffness of the manipulator along the direction ( α, β) 

J k ψ s Jacobian that maps the rate ˙ ψ s to the tip stiffness change rate ˙ k 

Fig. 2. The bending curvature could be constrained to change stiffness: (a) the continuum segment without the curvature-constraining rod, and (b) the 

curvature-constrained continuum segment. 

 

 

 

2. Design concept and overview 

This study presents a design of a 2-segment continuum manipulator to achieve continuously variable stiffness. The design

uses the concepts explained in Sections 2.1 and 2.2 . 

2.1. Constrained bending curvature 

As shown in Fig. 2 , the first concept is to constrain a continuum segment’s bending curvature. 

The continuum segment is formed of a base disk, a few spacer disks, an end disk, and several backbones, as illustrated

in Fig. 2 (a). These backbones are attached to the end disk and actuated to slide in the spacer disks’ holes and bend the

segment. 
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Fig. 3. A dual continuum mechanism assembled with the actuation segment: (a) a dual continuum mechanism formed by a distal segment and a proximal 

segment, (b) an actuation segment, and (c) two actuation modules for driving the actuation segment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed concept is that the rigid curvature-constraining rod is inserted to alter the effective segment length (bent

portion length), as shown in Fig. 2 (b). This concept is based on the idea that a shorter cantilever beam would be stiffer. 

Please note that the role of the curvature-constraining rod differs from that of the stiffening rod in [31] , since the stiffen-

ing rod does not vary the effective segment length. In [32] , the continuum segments are serially connected with rigid links,

and the effective lengths of segments are not changed. Furthermore, the role of the curvature-constraining rod here is also

different from that in [2] , in which bending was constrained to generate different kinematics, instead of stiffness. 

It should be mentioned that the effective segment length can be continuously changed by the insertion of a rod because

there is a continuous surface incorporated between the constraining rod and the disks. The continuous surface would also

facilitate rod insertion, as explained in Section 3.1 . 

2.2. Redundant backbone arrangement 

As shown in Fig. 3 , the second concept is to utilize the dual continuum mechanism, which can also enhance the stiffness.

Referring to Xu et al. [35] , a dual continuum mechanism is formed of a d istal s egment (DS), a p roximal s egment (PS), and

a few guiding cannulae. These segments’ structures are similar to that of the continuum segment shown in Section 2.1 . The

backbones of DS and PS are connected and routed through the cannulae. Since a similar structure and the same backbone

arrangement of the DS and the PS are used, bending the PS causes the DS to bend in the opposite direction. As shown in

Fig. 3 , to actuate the dual continuum mechanism, the PS should be assembled into an a ctuation s egment (AS). There are four

a ctuation b ackbones (AB) in the actuation segment, and these ABs are pushed and pulled by two actuation modules. Thus,

as shown in Fig. 3 (c), only two actuation DoFs are needed to bend the AS, resulting in the bending of the DS, regardless of

the number of backbones in the dual continuum mechanism. Furthermore, a multi-segment continuum arm can be formed

by serially connecting DSs bent by PSs and ASs. 

Stiffness enhancement is achieved by designing the DS with various lengths, sizes and redundant backbone arrangements.

For example, the DS can be designed with a minimum of three backbones or a large number of backbones. The latter would

obviously enhance the stiffness of DSs, as shown in a previous study [33] . Hence, the redundant backbone arrangement of

DS would enhance its stiffness. 

3. Design descriptions 

The continuum manipulator consists of two distal segments and an actuation assembly that contains two proximal seg-

ments. The actuation assembly bends the distal segments via the proximal segments, as well as changes the effective lengths

of the DSs. The manipulator and the control infrastructure are described in detail as follows. 

3.1. Distal segments with constrained curvature 

As in Fig. 4 (a), the DS-2 is serially connected to the DS-1. The detailed schematic is shown in Fig. 4 (b). As shown in

Fig. 5 , the arm is actuated by two PSs. The DSs are bent by the PSs, as introduced in Section 2.2 . 

There are eight nitinol backbones in each DS. As shown in Fig. 4 (a), the spacer disks are attached inside a helical strip.

The helical strip keeps the spacer disks separate. The spacer disks are welded outside a stainless braided tube. The stainless

braided tube is flexible enough to be bent and provides a continuous surface for rod insertion to continuously change the

effective segment length. 

The design utilizes the two concepts for stiffness variation and stiffness enhancement as presented in Section 2 . 
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Fig. 4. The distal segments with constrained curvature: (a) the prototype, (b) the schematic, (c) the CC rod-2 with the joint chain, and (d) the fabricated 

links. 

Fig. 5. The actuation assembly for the 2-segment manipulator: (a) the prototype, (b) the PS actuating assembly, and (c) the CC rod actuating assembly. 

 

 

 

 

 

 

 

The first is the dual continuum mechanism. The DSs possess a redundant backbone arrangement to enhance the stiffness.

Stiffness of a segment can be enhanced 4 times by increasing the number of backbones from 3 to 18, as shown in a previous

study [33] . It is expected that similar stiffness enhancement can be achieved here. Using this stiffness enhancement concept,

a continuum segment’s stiffness cannot be adjusted once the manipulator is built. 

The second concept involves inserting rigid rods to alter the effective segment length of DSs. As depicted in Fig. 4 (b), the

c urvature- c onstraining rod of the DS-1 is called CC rod-1, while the rod inside DS-2 is called CC rod-2. 

A key design for constraining the bending curvature of DS-2 is to allow CC rod-2 ′ s insertion into DS-2 without affecting

the bending of DS-1. A joint chain (as in Fig. 4 (c)) was applied, and it has high axial structural rigidity and very low flexural

rigidity such that it can transmit translation but does not affect the bending of DSs. The joint chain is formed by links. As

shown in Fig. 4 (d), the links are cut from a stainless-steel tube via electrical discharge machining. 
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Table 2 

Parameters of the prototype. 

l b1 l b2 l total l r l ci θ i δi ρ i 

100 mm 215 mm 315 mm 115 mm ∈ [0 mm, 100 mm] ∈ [0 °,135 °] ∈ [0 °,360 °) ∈ [40, + ∞ ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As in Fig. 4 (c), the CC rod-2 is connected with the joint chain such that the actuation assembly inserts CC rod-2 via the

joint chain. On the other hand, the CC rod-1 is directly driven by the actuation assembly for DS-1 and translated inside the

joint chain. For consistent structures of the DSs, DS-2 integrates a similar joint chain within it, as shown in Fig. 4 (b). 

As in Fig. 4 (b), DS-2 ′ s rigid portion can house the CC rod-2. This rigid portion must be long enough. Thus, CC rod-2 can

be used to alter the effective length of DS-2 without affecting the bending of DS-1. The length of rigid portion l r is detailed

in Table 2 . 

3.2. Actuation assembly 

As shown in Fig. 5 , the actuation assembly of the 2-segment manipulator consists of the PS actuating assembly and the

CC rod actuating assembly. 

In this adopted dual continuum mechanism design, the PS and the AS are integrated. Four actuation backbones are

actuated to bend the PS, and they are evenly circumferentially attached to the end disk of the PS. The pair of backbones

on the opposite sides of end disk passes through cannulae and is fixed on a pair of nuts. Each pair of nuts is driven by

coupled screws via a meshing pair of spur gears to generate opposite motion, and the nut and the rectangular bellow move

on the guiding rods. The rectangular bellow is applied to prevent the backbones from buckling. The two PSs need four pairs

of actuation backbones, nuts and geared lead screws. 

As shown in Fig. 5 (c), the joint chain is actuated by a lead screw to translate the CC rod-2. The CC rod-1 is connected to

a nut via two bars to compactly arrange the motors, while the nut is driven for translation by the lead screw and the motor.

3.3. Control infrastructure 

Six servomotors (Maxon DCX22L from Maxon Group) were applied in the actuation assembly: four servomotors were

used to drive the PSs, and two servomotors were applied to actuate the CC rods. The servomotors were controlled and driven

by six digital controllers (Maxon EPOS2 24/2 from Maxon Group). The desired positions of the servomotors are calculated

using a desktop computer according to actuation kinematics and sent to the digital controllers via a CAN (Controller Area

Network) bus. 

4. Kinematics 

Section 4.1 summarizes the coordinates system, kinematic modeling assumptions, and nomenclature. The kinematics of 

the system is presented in Section 4.2 . 

4.1. Coordinates system, modeling assumptions, and nomenclature 

The nomenclature for describing the continuum manipulator is detailed in Table 1 . For the i th curvature-constrained

segment, the coordinate system is defined as follows and as shown in Fig. 6 . 

• The base disk coordinate system { ib} ≡ { ̂ x ib , ̂  y ib , ̂  z ib } is aligned with the base disk. Its origin is located at the base disk’s

center, while ˆ x ib points from its origin to the first backbone. 
• The constrained base disk coordinate system { ic} ≡ { ̂ x ic , ̂  y ic , ̂  z ic } is aligned with a virtual constrained base disk. Its position

is changed via the CC rod insertion. { ic } is translated from { ib } in the ˆ z ib . 
• Bending plane coordinate system-1 { ip} ≡ { ̂ x ip , ̂  y ip , ̂  z ip } shares its origin with { ic } and has the virtual central backbone

bent in its XY plane. 
• Bending plane coordinate system-2 { iu } ≡ { ̂ x iu , ̂  y iu , ̂  z iu } is obtained from { ip } by a rotation about ˆ z ip . Its origin is located

at the center of the end disk, and its XY plane is aligned with the bending plane of the segment. 
• The end disk coordinate system { ie } ≡ { ̂ x ie , ̂  y ie , ̂  z ie } is attached to the end disk of the i th curvature-constrained segment,

and ˆ z ie is normal to the end disk. ˆ x ie points from its origin to the first backbone. 

Three kinematic modeling assumptions are used. 

• A virtual central backbone can be applied to characterize the shape and length of the continuum segment, as shown in

Fig. 6 . 
• The shapes of the bent portion can be approximately described as circular arcs, referring to Xu and Simaan [36] . 
• The length of the constrained portion and bent portion can be continuously changed due to curvature-constraining rods
insertion. 
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Fig. 6. Coordinates of the curvature-constrained continuum segment. 

Fig. 7. The 2-segment manipulator: (a) the coordinates, and (b) the workspace. 

 

 

 

 

 

 

 

 

 

 

 

4.2. Kinematics of the 2-segment arm 

The kinematics of a single curvature-constrained segment relies on the insertion of the CC rod because the insertion of

the CC rod alters the positions of the constrained base disk and the end disk of a segment, as shown in Fig. 6 . 

The i th curvature-constrained segment has the configuration space ψ i ≡ [ θ i δi ρ i ] 
T . The length l bi is constant. The effec-

tive segment length l ci can then be represented as l ci = θ i ρ i . 

Since the base disk of DS-2 is attached to the end disk of DS-1, { 2b } coincides with { 1e }. The 2-segment arm possesses

six DoFs, and it has the configuration space ψ 

≡ [ ψ 

T 
1 ψ 

T 
2 ] 

T . The total length of the arm is l total = l b 1 + l b2 . As shown in

Fig. 7 (a), the manipulator’s tip position is described as in (1) , and the orientation of the end disk is described as in (2) . 

1 b p 2 e = 

1 b p 1 e + 

1 b R 2 b 
2 b p 2 e (1)

Where 1 b R 2 b ≡ 1 b R 1 e , and 

ib R ie and 

ib p ie are the orientation and position of the end disk of the i th segment, respectively,

referring the derivations in to [34] . 

1 b R 2e = 

1 b R 1e 
1 e R 2b 

2 b R 2e = 

1 b R 2e 
2 b R 2e (2)

The instantaneous kinematics from ψ to 1b p 2e can be written as in (3) : 

1 b v 2 = J v ψ 

˙ ψ (3)

Where J v ψ 

= [ J 1v ψ 

− [ ( 1 b R 2b 
2 b p 2 e ) ×] J 1 ωψ 

1 b R 2 b J 2v ψ 

] , [ p ×] is the skew-symmetric matrix of the vector p , and J i v ψ 

and J i ωψ

are the linear and angular velocity Jacobian matrices of the i th segment, respectively, referring to Zhao et al. [34] . 

For the actuation kinematics for driving the backbones of PSs to actuate the DSs to the target ψ, please refer to Xu et al.

[35] . 

Table 2 details the parameters of the manipulator. The manipulator’s workspace is depicted in Fig. 7 (b), while the points

(from 

1b p to 1b p ) listed in Table 3 for stiffness characterizations are also shown. 
A D 
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Table 3 

Points for stiffness characterizations. 

1b p A 
1b p B 

1b p C 
1b p D 

[60 mm 0 mm 300 mm ] 
T 

[120 mm 0 mm 240 mm ] 
T 

[180 mm 0 mm 180 mm ] 
T 

[240 mm 0 mm 120 mm ] 
T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Kinestatic model and stiffness control formulation 

In this section, the kinestatic model of the 2-segment continuum manipulator is derived. The Cosserat rod theory is

adopted. The 2-segment continuum manipulator is approximated as a single rod with the bending rigidity to be identified,

referring to Mahvash and Dupont [24] , because the relative motions between various structural members of the slender

manipulator is negligible compared with the tip deflection under an external force. This assumption necessarily simplifies

the kinestatic model and enables computationally efficient calculation of tip stiffness. 

When the manipulator is deployed into an environment for a manipulation, the deflected tip position 

1 b 
f 

p 2 e and the

tip deflection 

1b d due to the external force 1b f can be obtained by solving the Cosserat rod mechanics, as described in

Section 5.1 . Please note that the external force 1b f is a virtual force for quantifying the tip stiffness. The external force 1b f

can be expressed in a spherical coordinate as s f = [ f α β] T , where f = ║ 1b f ║ , α is the inclination angle from ˆ z 1 b , and β is

the azimuth angle from ˆ x 1 b . The deflection component parallel to the external force 1b f is 1b d || = 

1b d ·1b f/ ║ 1b f ║ . 1b d || can be

expressed in the spherical coordinate as s d || = [ d α β] T , where d = ║ 1b d || ║ . 
The desired direction for the stiffness adjustment is described by α and β in the spherical coordinate as ( α, β). The tip

stiffness of the continuum manipulator under the configuration ψ is quantified as k ( ψ, α, β) = ║ 1b f ║ / ║ d || ║ = f / d . The target

tip stiffness is denoted as k target ( α, β). As presented in Section 5.2 , the stiffness control formulation drives the continuum

manipulator to the desired tip position 

1 b p 

target 
2 e 

and the control tip stiffness to k target ( α, β) along the direction ( α, β), fully

utilizing the manipulator’s six actuators. 

5.1. Kinestatic model 

The 2-segment continuum manipulator is modeled as a single Cosserat rod along the virtual central backbone in the

segments. Without an external force, shapes of the segment’s bent portion can be approximated circular as in [36] . Then

the tip position 

1b p 2e can be calculated using the kinematics model in Section 4.2 . The deflected tip position 

1 b 
f 

p 2 e due to

the virtually applied external force 1 b 
f 

(namely s f) , as well as the tip stiffness k ( ψ, α, β), can also be calculated as follows. 

The manipulator’s deflected position 

1 b 
f 

p ( s ) and orientation 

1 b 
f 

R ( s ) are functions of the arc length s ∈ [0, l total ]. As shown

in Fig. 7 (a), along the arc length s , the constrained portions of the manipulator are located in s ∈ [0, l b1 −l c1 ] ∪ [ l b1 + l r ,

l tota1 −l c2 ], while the bent portions are located in s ∈ [ l b1 −l c1 , l b1 ] ∪ [ l tota1 −l c2 , l tota1 ]. The rigid portion of DS-2 is located in

s ∈ [ l b1 , l b 1 + l r ]. 

v ( s ) and u ( s ), which represent the rates of change of 1 b 
f 

p ( s ) and 

1 b 
f 

R ( s ), are described in (4) : 

d 1 b 
f 

p ( s ) 

ds 
= 

1 b 
f R ( s ) v ( s ) 

d 1 b 
f 

R ( s ) 

ds 
= 

1 b 
f R ( s ) [ u ( s ) × ] 

(4) 

Where v ( s ) is set as [0 0 1] T , ignoring the shear and longitudinal strains. 

Referring to Rucker et al. [37] , the equilibrium of a Cosserat rod is formulated with the rates of change of the internal

wrench with respect to the arc length s in (5) , neglecting the distributed force and moment: 

dm (s ) 

ds 
= −

[
d 1 b 

f 
p (s ) 

ds 
×
]

n (s ) 

dn (s ) 

ds 
= 0 (5) 

Where m ( s ) and n ( s ) are the internal moment and force of the rod. 

The constitutive model is applied to relate the strains u ( s ) and v ( s ) to the internal moment m ( s ) and inner force n ( s ).

Since the shear and longitudinal strains are ignored, only the relationship between u ( s ) and m ( s ) is considered. According

to the linear elastic behavior, the internal moment m ( s ) at any point s along the rod is given by (6) : 

m (s ) = 

1 b R (s ) K (s )(u (s ) − u 

∗(s )) (6)
f 
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Where K ( s ) is the stiffness matrix. The 2-segment continuum manipulator has a piecewise stiffness matrix K ( s ), as shown

in (7) : 

K (s ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

diag( k c ) s ∈ [ 0 , l b1 − l c1 ] ∪ [ l b1 + l r , l total − l c2 ] 

diag( k b ) s ∈ [ l b1 − l c1 , l b1 ] ∪ [ l total − l c2 , l total ] 

diag( k r ) s ∈ [ l b1 , l b1 + l r ] 

(7)

Where k c , k r , and k b are the stiffness parameter vectors of the constrained, the rigid and the bent portions, respectively, as

shown in Fig. 7 . The stiffness parameters are calibrated in Section 6.2 . The original u 

∗( s ) is given by the kinematic model,

and expressed in (8) . 

u 

∗(s ) = 

⎧ ⎨ 

⎩ 

1 
ρ1 

1 b ˆ z 1 p s ∈ 

[
l b1 − l c1 , l b1 

]
1 
ρ2 

1 b ˆ z 2 p s ∈ 

[
l total − l c2 , l total 

]
0 3 ×1 Otherwise 

(8)

The force s f = [ f α β] T is exerted on the tip of the manipulator along the desired direction ( α, β) for stiffness adjustment.

The boundary conditions at the distal tip in (9) are specified from the force 1b f that is applied at the manipulator’s tip. 

n ( l total ) −1 b f = 0 

m ( l total ) = 0 

(9)

Because the base of the 2-segment manipulator is fixed, the boundary conditions at the base include the initial position and

orientation, as in (10) . 

1 b 
f p ( 0 ) = 0 

1 b 
f R ( 0 ) = I 

(10)

The equations in (4) , (5) and (6) can be efficiently solved using the shooting method to obtain the deflected tip position
1 b 
f 

p 2 e ≡ 1 b 
f 

p 

(l total ) 

1 b 
, according to Till et al. [38] . 

With 

1 b 
f 

p 2 e obtained, the tip deflection is calculated as 1b d = 

1b 
f p 2 e −1b p 2e , where 1b p 2e can be obtained from the kine-

matics, as described in Section 4.2 . Along the desired direction of stiffness adjustment, the deflection parallel to the external

force 1b f is formulated as 1b d || = 

1b d ·1b f/ ║ 1b f ║ and transformed to the spherical coordinate system as s d || = [ d α β] T , where

d = ║ 1b d || ║ . Hence, the tip stiffness along the direction ( α, β) is denoted as k ( ψ, α, β) = f / d . 

5.2. A stiffness control formulation 

The proposed manipulator consists of two curvature-constrained segments and possesses six actuators. Hence, the ma-

nipulator possesses redundant DoFs to reach a tip position that needs only three DoFs. As shown in Fig. 1 (b)–(c), various

configurations with the same tip position and different stiffness can be formed. 

The tip stiffness of the 2-segment manipulator is influenced by the segments’ radii ρ1 and ρ2 . For the same bending an-

gle, a smaller ρ i results in a shorter effective segment length and higher tip stiffness, regardless of direction of the external

force. Hence, the curvature variation can be used to adjust the tip stiffness of the manipulator. 

On the other hand, the continuum segment’s stiffness within and outside the bending plane is different, referring to a

previous study [33] . Hence, for a desired direction for stiffness adjustment, the bending plane of the segments can also be

varied to adjust the stiffness. The angle between the two segments’ bending planes is defined as δd = δ2 −δ1 . The value of

δd would affect the pose of the manipulator and result in stiffness variation, as shown in Fig. 1 (b). 

The stiffness control formulation utilizes the redundancy in the configuration space. The stiffness variation of the 2-

segment manipulator is achieved by adjusting the stiffness control space vector ψ s ≡ [ δd ρ1 ρ2 ] 
T , while the position control

space vector is ψ p ≡ [ θ1 δ1 θ2 ] 
T . Hence, the control space of the 2-segment manipulator can be defined as ψ c ≡ [ ψ p 

T ψ s 
T ] T ,

and the tip stiffness along the direction ( α, β) is written as k ( ψ c , α, β). 

The instantaneous kinematics from ψ c to 1b p 2e can be derived from (3) and described as follows: 

1 b v 2 = J v ψ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ θ1 

˙ δ1 

˙ ρ1 

˙ θ2 

˙ δ1 + 

˙ δd 

˙ ρ2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

== 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

J T 
v ψ 

(: , 1) 

J T 
v ψ 

(: , 2) + J T 
v ψ 

(: , 5) 

J T 
v ψ 

(: , 4) 

J T 
v ψ 

(: , 5) 

J T 
v ψ 

(: , 3) 

J T 
v ψ 

(: , 6) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

T ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˙ θ1 

˙ δ1 

˙ θ2 

˙ δd 

˙ ρ1 

˙ ρ2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[
J v ψ p J v ψ s 

][ 

˙ ψ p 

˙ ψ s 

] 

= J v ψ c 
˙ ψ c (11)

Where. J v ψ 

p = J v ψ 

c (:,1:3), and J v ψ 

s = J v ψ 

c (:,4:6). 
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The stiffness control space ψ s is varied to change the tip stiffness k ( ψ c , α, β). To avoid perturbing the tip position, the

rates of change in the stiffness control space ˙ ψ s should also satisfy (12) , whereas (12) gives (13) . The position control space

ψ p should be varied according to (13) to maintain its tip position and generate a desired 

˙ ψ s . 

0 = J v ψ p 
˙ ψ p + J v ψ s 

˙ ψ s (12) 

˙ ψ p = −J + 
v ψ p 

J v ψ s 
˙ ψ s ⇒ �ψ p = −J + 

v ψ p 
J v ψ s �ψ s (13) 

Where J + 
v ψ s 

is the pseudo inverse of the Jacobian J v ψ 

p . 

The rate of change in the stiffness control space ˙ ψ s generates a stiffness change rate ˙ k along the desired stiffness adjust-

ment direction ( α, β) according to (14) : 

˙ k = J k ψs 
˙ ψ s (14) 

Where the Jacobian J k ψ 

s is computed via a finite difference approach that evaluates the stiffness control vector ψ s : For a

given control space ψ c , the tip stiffness k ( ψ c , α, β) is calculated first using the Cosserat rod mechanics. Then, �ψ c = [ �ψ p 
T 

�ψ s 
T ] T is obtained by varying the stiffness control vector ψ s to get �ψ s and calculate �ψ p using (13) . Each column of J k ψ 

s 

is computed by varying the control space, re-evaluating the tip stiffness, and dividing the difference in tip stiffness by the

increments. 

Hence, to generate a desired stiffness change rate ˙ k and maintain the tip position, the rate of change in the control space
˙ ψ c can be obtained according to (15) , derived from (13) and (14) . 

˙ ψ c = 

[ 

−J + 
v ψ p 

J v ψ s J 
+ 
k ψs 

J + 
k ψs 

] 

˙ k (15) 

Where J + k ψ 

s is the pseudo inverse of the Jacobian J k ψ 

s . 

During each iteration of the stiffness control process, the arm is driven toward a target tip position 

1 b p 

target 
2 e 

while at-

tempting to reach target tip stiffness k target ( α, β) in a desired direction ( α, β). 

First, the desired linear velocity 1b v 2 is obtained according to (16) . Then, the increment in the position control space

�ψ p is to drive the manipulator towards 1 b p 

target 
2 e 

as in (17) . 

1 b v 2 = v lim 

( 1 b p 

target 
2 e 

− 1 b p 

current 
2 e ) / 

∥∥1 b p 

target 
2 e 

− 1 b p 

current 
2 e 

∥∥ (16) 

Where v lim 

is a coefficient for limiting the tip velocity. 

�ψ p = J + 
v ψ p 

1 b v 2 �t (17) 

Where �t is the time duration for each iteration. 

Second, the desired tip stiffness change rate ˙ k is obtained according to (18) . Then, the increment in the control space

�ψ c is written in (19) according to (15) . 

˙ k = k lim 

( k target (α, β) − k ( ψ c , α, β)) / 
∣∣k ( ψ c , α, β) − k target 

∣∣ (18) 

Where k lim 

is a coefficient for limiting the stiffness change rate. 

�ψ c = 

[ 

−J + 
v ψ p 

J v ψ s J 
+ 
k ψs 

J + 
k ψs 

] 

˙ k �t (19) 

During each iteration, the control space ψ c is updated as in (20) : 

ψ c ← ψ c + 

[ 

J + 
v ψ p 

1 b v 2 − J + 
v ψ p 

J v ψ s J 
+ 
k ψs 

˙ k 

J + 
k ψs 

˙ k 

] 

�t (20) 

6. Experimental characterizations 

It is known from previous studies [39] that there exists a discrepancy between the actual bending angle and the com-

manded angle of a segment; therefore, motion compensation is necessary for bending the 2-segment manipulator to accu-

rate angles. The motion compensation is presented in Section 6.1 . Since the manipulator is modeled as a single Cosserat

rod in Section 5.1 , the stiffness parameter calibration of the Cosserat rod is presented in Section 6.2 to accurately pre-

dict the tip stiffness. The numerical simulations and experimental verifications of the stiffness control formulation are in

Sections 6.3 and 6.4 , respectively, to demonstrate the efficacy of the proposed design and the stiffness control formulation. 
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Fig. 8. Motion compensation of the segments: (a) setup of bending measurements, and (b) bending measurements of the DSs before and after compensa- 

tion. 

Fig. 9. Experimental setup of stiffness calibration for (a) k |x,y and (b) k |z . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Motion compensation 

The experimental setup for motion compensation is shown in Fig. 8 (a), referring to [39] . Markers are attached to the end

disk of DSs. The continuum segments were actuated to bend to θ i = 45 °, with δi ranging from 0 ° to 360 ° with an interval of

5 °. The actual angle can be measured by an optical tracker (Micron Tracker SX60 from Claron Technology Inc.) and plotted

in Fig. 8 (b). 

Then the adopted motion compensation was described as in (21) : 

˜ θi = w i θi , i = 1 , 2 (21)

Where the compensation coefficients are w 1 = 1 . 280 and w 2 = 1 . 285 for the two distal segments. For the target θ i , the

compensated 

˜ θi should be applied to bend the DS. 

As plotted in Fig. 9 (b), the bending angles fluctuated around the target value after compensation. The compensated bend-

ing angle is shown to have errors within 2 ° from the target angle. The errors can be primarily from two aspects. Firstly, the

measurement accuracy of the tracker is about 0.20 mm. The marker is 30 mm long. Then the resultant angle measurement

accuracy is calculated to be 0.76 °. What is more, there are tolerances assigned in the holes in which the backbones are

passed. The tolerances also contribute to the bending errors. Benefiting from the redundant backbone arrangement, there is

no need to compensate for δi . 

6.2. Stiffness parameter calibration 

Calibration of the stiffness matrix K ( s ) of the Cosserat rod is presented here. As described in (7) , K ( s ) is a piecewise

function composed of the parameters of the constrained, the bent and the rigid portions of the manipulator (a.k.a., k c , k b

and k r ). These parameters shall be calibrated. 

As shown in Fig. 9 , the continuum manipulator was set straight. Then, it was driven to change the bent portion length

l from 0 mm to 100 mm with an interval of 10 mm. Under each value of l , a six-axis force sensor (Nano-17 from ATI
ci ci 



12 B. Zhao, L. Zeng and Z. Wu et al. / Mechanism and Machine Theory 149 (2020) 103746 

Table 4 

Parameters of the numerical experiments. 

�t v lim k lim f α β

0.01 s 20 mm/s 1.1 N/mm/s 0.5 N π /2 rad 0 rad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industrial Automation) was used to measure the stiffness of the manipulator. The force sensor can sense the force with a

1/160-N sensing accuracy, and it can also measure the torque with a 1/32-Nmm sensing accuracy. 

First, the xy -components of the stiffness parameters, k | x, y = [ k b | x , y k c | x , y k r | x , y ] 
T , were calibrated. As shown in Fig. 9 (a),

the force sensor was applied to sense the exerted force and attached on a XYZ linear stage. The probe mounted on the

force sensor was first driven by the XYZ linear stage to touch the tip of the arm. Then, the tip of the arm is perturbed by

the probe in the ˆ x 1 b direction. For every 0.5-mm perturbation generated by the XYZ linear stage, the force sensor recorded

the exerted forces. The measured tip stiffness k m 

( π /2,0) was obtained by a linear regression between the forces and the

perturbations. Then, the predicted stiffness k ( ψ, π /2,0) was obtained by solving the Cosserat theory equations, as detailed

in Section 5.1 . Using the measured stiffness and the kinestatic model, an optimization could be formulated as in (22) , which

involves parameter k | x,y . Then, the fmincon function, which is a nonlinear multivariable algorithm implemented in MATLAB,

was used to solve this optimization equation using initial values k | x, y = [0.5 1 5] Nm 

2 , yielding a result of k | x, y = [0.581 2.331

6.962] Nm 

2 . 

k | x,y = arg min 

k | x,y 

( 

1 
n 

n ∑ 

p=1 

∥∥k m 

(
π
2 
, 0 

)
− k 

(
ψ, π

2 
, 0 

)∥∥) 

(22) 

Second, the z-components of the stiffness parameters, k | z = [ k b | z k c | z k r | z ] 
T , are calibrated. The 6D force sensor was

fixed on the rotary stage and connected with the end disk of the continuum manipulator. As shown in Fig. 9 (b), the end

disk was rotated by the rotary stage. The exerted torques were measured for every 0.5 ° rotation. A linear regression between

the torque and the rotations gave the torsional stiffness. Then, the predicted torsional stiffness can be obtained by solving

the Cosserat theory equations, as detailed in Section 5.1 . Similarly in the optimization of k | x,y , the optimization involving k | z 
was applied to minimize the errors between predictions and measurements, and the result of k | z is [0.0875 0.366 2.503]

Nm 

2 . 

6.3. Numerical experiments of stiffness control formulation 

Stiffness control formulation utilizes the redundancy in the configuration space, and the stiffness variation of the 2-

segment manipulator is achieved by adjusting the stiffness control space. Different ρ i and δd values lead to different stiff-

ness. To verify the proposed idea, this section presents numerical experiments for three case studies, as shown in Fig. 10 . 

In these three cases, the simulated manipulator is actuated to the target position and then driven by the stiffness control

formulation to control the tip stiffness and maintain the tip position at 1b p c . The simulations vary the continuum manip-

ulator from the initial configuration with high stiffness, to the configuration with low stiffness, and back to the original

configuration. Case I is simulated to change the radii of curvature ρ i to vary the tip stiffness and maintain the tip position

while keeping δd constant. Case II is carried out to vary δd to change the tip stiffness and maintaining the tip position while

keeping ρ i constant. In Case III, the stiffness control formulation varies stiffness control space ψ s to change the tip stiff-

ness. These three cases have the same initial configuration, and the parameters of the numerical experiments are detailed

in Table 4 . 

The results of the three cases are depicted in Fig. 10 . The simulations are shown in the first column of Fig. 10 , and the

poses with high stiffness and low stiffness are presented. The control space variations are shown in the second column of

Fig. 10 . The tip stiffness variations are shown in the third column of Fig. 10 . 

Some observations can be made from Fig. 10 . 

• As shown in Case I, smaller ρ i (higher curvature) leads to higher tip stiffness. The initial configuration of stiffness control

formulation with ρ i = 40 mm possesses the higher tip stiffness, while the configuration with bigger ρ i has the lower

stiffness. 
• Varying δd also leads to tip stiffness variation, as shown in Case II. Hence, stiffness variation could be achieved by

adjusting the control space ψ c , as demonstrated in Case III. 
• The stiffness control formulation can maintain the tip position of the manipulator at the desired position, as shown in

the simulation, when the control space is varied to change the tip stiffness. 

6.4. Stiffness variation within the workspace 

The stiffness variation of the proposed continuum manipulator does depend on the positions as well as the manipulator

poses within the workspace. The reason is somewhat straightforward: this slender continuum manipulator tends to have

higher stiffness in the axial direction and lower stiffness in the lateral direction. 
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Fig. 10. Numerical experiments of stiffness control formulation: (a.1) Case I, the tip stiffness is changed by varying ρ i , (a.2) control space variation, and 

(a.3) the target and current tip stiffness variation k ( ψ, π /2,0); (b.1) Case II, the stiffness is adjusted by changing δd , (b.2) control space variation, and (b.3) 

the target and current tip stiffness variation k ( ψ, π /2,0); and (c.1) Case III, the stiffness is changed by varying ψ c , (c.2) control space variation, and (c.3) 

the target and current tip stiffness variation k ( ψ, π /2,0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximal tip stiffness and stiffness variation ratio of the proposed continuum manipulator were quantified at the points

across the workspace. The stiffness variation ratio is the ratio between the maximal and minimal tip stiffness. 

Since the workspace of the continuum manipulator is axially symmetric with respect to the Z axis, the points in the first

quadrant of the XZ -plane in the workspace were investigated. At each point, the maximal and minimal tip stiffness can be

searched via the proposed stiffness control formulation as in Section 5.2 . 

The results of the maximal tip stiffness and the stiffness variation ratios are depicted in Fig. 11 . 

As shown in Fig. 11 , the highest tip stiffness k ( ψ c , π /2,0), with the 2nd segment being straight, rigid, and almost parallel

to the desired tip stiffness direction (a.k.a., in the X direction), is 39.11 N/mm. As shown in the inset, the stiffness is high

because the stiffness is primarily in the axial direction of the manipulator. When the manipulator is at the positions close

to the Z axis, the stiffness is relatively low because the measured tip stiffness is in the lateral direction with lengthened

segments. 

The maximal stiffness variation ratio is 90.63, as shown in Fig. 11 (b). The reason may be seen from the inset of Fig. 11 (a).

The maximal tip stiffness is in the axial direction of the manipulator. The manipulator can change its pose such that i) the

stiffness direction is moved towards the manipulator’s lateral direction, and ii) more importantly the bent segments are

lengthened. Then, the directional stiffness is substantially reduced. 

The stiffness variation ratio at the 1b p D point in Fig. 11 (b) is calculated as 12.02. The experimental verification showed a

stiffness variation ratio of 10.83 as presented in Section 6.5 . 

6.5. Stiffness variation verification 

With the motion compensation and calibration of stiffness parameters implemented, the stiffness variation was achieved

by the proposed stiffness control formulation and carried out at different positions on the actual system. The goal of the

experiment is to show the usefulness of the stiffness control formulation and the proposed design. 
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Fig. 11. Numerical experimental results: (a) maximal tip stiffness k ( ψ c , π /2,0), and (b) stiffness variation ratio. 

Fig. 12. Stiffness variation of the stiffness control formulation at (a) 1b p A along the direction ( π /4, π /4) , (b) 1b p B along the direction ( π /2, π /4), (c) 1b p C 
along the direction (0, 0), and (d) 1b p D along the direction ( π /2, 0). 

 

 

 

 

 

 

 

The 2-segment continuum manipulator was actuated to four positions (from 

1b p A to 1b p D , as shown in Fig. 7 ). For each

target tip position, the continuum manipulator was driven by the stiffness control formulation to vary the tip stiffness while

maintaining the tip position, and the tip stiffness is quantified in different directions ( α, β). The verification would vary

the continuum arm from the initial configuration, to the configuration with low or high stiffness, and back to the original

configuration. During iterations of the stiffness control formulation, the stiffness of the manipulator is measured in a quasi-

static condition every 20 iterations, using a similar setup as in Section 6.2 . Fig. 12 plots the measured tip stiffness values

from nine experiments and the predicted values of stiffness control formulation at the four positions in different directions.

The tip stiffness was reduced at 1b p and 

1b p , and increased at 1b p and 

1b p . 
A C B D 
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The tip stiffness measurements and predictions are detailed in Fig. 12 . Some observations can be made from the results.

• The discrepancy between the experimental tip stiffness and the predicted results is generally small. The discrepancy is

believed to be from the model simplification that the continuum manipulator was regarded as a single rod. 
• Tip stiffness of the continuum manipulator is decreased at 1b p A and 

1b p C , while tip stiffness is increased at 1b p B and 

1b p D .

The results show that the trend of the measured tip stiffness is consistent with that of the predicted tip stiffness. Hence,

the stiffness control formulation can be applied to adjust/control tip stiffness, even though the model simplification is

not avoided. 
• Among these cases, the tip stiffness of the final configuration is increased or decreased from 1.93 times in Fig. 12 (c) to

10.83 times in Fig. 12 (d) the initial values of the stiffness control formulation. Thus, the efficacy of the proposed design

and the stiffness control formulation can achieve continuously variable stiffness. 
• As shown in Fig. 12 , it would take about 100 iterations for the stiffness to vary from the highest to the lowest or to the

lowest to the highest. As a quick insertion or extraction of the curvature constraining rod would introduce disturbances

to the shape, the stiffness variation time is set to 2 s for the stiffness from the highest to the lowest, and 3 s for the

stiffness from the lowest to the highest. 
• The experimental results show that the proposed approach does not bring noticeable hysteresis. The tip stiffness returned

to the initial value after a cycle of variation. 

7. Conclusions 

Continuum manipulators have become popular in various applications in confined spaces because of their safe interac-

tions and distal dexterity. They are at times expected to have adjustable stiffness to handle different tasks. Hence, the paper

proposes a 2-segment continuum manipulator design with continuously variable stiffness for increasing its usefulness. The

design utilizes the concepts of constraining bending curvature for stiffness variation and redundant backbone arrangement

for stiffness enhancement. The proposed continuum manipulator has two serially connected DSs actuated by PSs, and the

curvature-constraining rods are used to alter the effective length of the continuum segments. The joint chain with low flex-

ural rigidity and high axial rigidity is a key component for actuating the CC rod-2 and enabling this proposed idea. The

kinematics is derived by assuming a circular shape and that the effective segment length can be changed continuously. The

manipulator is then approximately modeled as a single rod, and the Cosserat rod theory is applied in the kinestatic model to

calculate the deflection of the manipulator. The tip stiffness is numerically obtained by solving the equations of the Cosserat

rod theory. The stiffness control formulation fully utilizes the redundant configuration DoFs to adjust the tip stiffness in a

desired direction while reaching a target tip position. 

Experiments were carried out for motion compensation, stiffness parameter calibration, and stiffness control verifications.

The results of the numerical experiments demonstrate that stiffness variation can be achieved by changing the radii of

curvature ρ i and the angle between the two segments’ bending planes δd . The experiments of stiffness control verification

show that the stiffness control formulation can be used to control the tip stiffness, even though there is a discrepancy

between the experimental stiffness and the predicted stiffness. The results also show that the tip stiffness of the continuum

manipulator can be enhanced 10.83 times. 

Compared with the state-of-the-art approaches for stiffness variation, this proposed approach does not bring noticeable

actuation hysteresis because the inserted components only change the structure’s elastic bending behaviors. What’s more,

the inserted components are passive. It requires less change to the manipulator structures. On the other hand, the stiffness

of the continuum manipulator is finite. The tip position can be disturbed under external and internal disturbance (e.g.,

insertion of the CC rod). What’s more, How to design a curvature-constrained continuum manipulator with more than three

segments is still challenging. 
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