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 Abstract - Continuum manipulators gain popularity and 
have been applied in various scenarios due to their advantages 
such as design compactness, dexterity, intrinsic compliance, etc. 
Since analytical inverse kinematics for a continuum manipulator 
with constant-length segments does not exist, numerical 
approaches, such as resolved motion rates, are usually adopted. 
A good practice shall ensure numerical stability for the 
configuration variables near their limits. However, the existing 
methods mainly focus on preventing the configuration variables 
from saturation. When an updated configuration variable 
violates its limit in an inverse kinematics process, the updated 
variable is simply bounded at the corresponding limit. This 
handling approach sometimes leads to a position and (or) 
orientation divergence. This paper hence proposes a dimension 
reduced instantaneous inverse kinematics for the configuration 
variable limits of non-redundant continuum manipulators. This 
dimension reduction method is enabled by the configuration 
variables that are not at their limits to achieve numerical 
stability during the entire inverse kinematics process. Numerical 
Experimental simulations are reported on a 6-DoF (Degree of 
Freedom) continuum manipulator. A clear improvement was 
identified while compared with the conventional Jacobian-based 
numerical inverse kinematics. 
 
 Index Terms – Continuum Manipulator, Configuration 
Variable, Inverse Kinematics, Joint Limit, Jacobian Matrix,. 

I.  INTRODUCTION 

Continuum manipulators have segments that can bend 
continuously and appear smooth curves [1]. Due to the distinct 
characteristics like structural simplicity, intrinsic compliance, 
dexterity and design compactness [2-4], continuum 
manipulators are showing great potentials in industrial 
inspection, minimally invasive surgery, prosthetics, etc. 

Current approaches for formulating the kinematics of 
continuum segments mainly include the following five 
methods, via i) the uses of Hamilton’s principle, ii) elliptic 
integrals, iii) Cosserat rod theory, iv) virtual power, and v) 
constant curvature bending assumption. The constant 
curvature bending assumption treats a bent segment as a 
circular arc and this handling is computationally efficient and 
has been well verified theoretically and experimentally [2, 5]. 

Under this constant curvature bending assumption, each 
circular arc can be defined via three configuration variables: 
bending angle, bending plane direction, and continuum 
segment length. With the target poses expressed in the task 
space, the inverse kinematics from the task space to the 
configuration space of the continuum manipulator does not 
have analytical solutions with constant-length segments [6]. 
The inverse kinematics usually adopts a Jacobian-based 
resolved motion rates solution [7]. Implementation examples 
include the 6-DoF (Degree of Freedom) manipulator in a 
previous study [8], as shown in Fig. 1, and several others [9-
11]. 

Fig. 1 (a) A constructed 6-DoF continuum manipulator from [8]; (b) the 
continuum manipulator performing a peg transfer task. 

It is expected that this iterative inverse kinematics process 
always maintains its numerical stability for the configuration 
variables of the continuum manipulator even around their 
limits. Handling the configuration variable limits (joint limits) 
usually include the following approaches. For example, a 
weighted least-norm solution can be used to penalize the 
motion towards joint limits [12]. On the other hand, extended 
Jacobian matrix can be used to push the joint values towards 
their range centers [13]. However, these methods cannot 
guarantee the avoidance of reaching the joint limits. When an 
updated joint value violates the corresponding limit, the joint 
value is usually bounded at its limit. Sometimes, this 
simplistic handling leads to position and (or) orientation 
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divergence. Such a divergence phenomenon is illustrated in 
Section IV in detail. 

Recent developments proposed null space saturation 
algorithm [14] and joint clamping algorithm [15] for 
kinematically redundant manipulators. Inspired by these 
developments, this paper hence presents a dimension reduced 
instantaneous inverse kinematics for continuum manipulators, 
aiming at achieving numerically stable real-time teleoperation. 
The fundamental principle lies on the use of the unsaturated 
configuration variables to realize the desired position and 
orientation tasks.  

What’s more, the end effector orientation of a continuum 
manipulator is highly coupled with the end effector position 
due to its bent body shapes. When the position and the 
orientation inverse kinematics cannot converge at the same 
time, a prioritized formulation is adopted with tip position 
assigned with a higher priority.  

The remainder of this paper is organized as follows. 
Section II explains the dimension reduced instantaneous 
inverse kinematics, while the kinematics modeling of a 6-DoF 
continuum manipulator is derived in Section III. Experimental 
characterizations are reported in Section IV with the 
conclusions summarized in Section V. 

II.  DIMENSION REDUCTION WITH SCALING 

The algorithm background is briefly introduced in Section 
II.A, while the proposed dimension reduction is elaborated in 
Section II.B in detail. 

A. Resolved Motion Rate Control 
An n-DoF continuum manipulator is assumed for an m-

dimension task space pose x (generally n ≥ 6, m = 6), the 
Jacobian for the manipulator can be expressed as follows. 
 [ ]1 i n=J j j j   (1) 
Where ji is the column vector representing the partial 
derivative of the end effector twist x with respect to the i-th 
configuration variable ψi of the configuration vector ψ.  

Jacobian matrix can establish instantaneous kinematics 
mapping from the configuration velocity ψ  to the task velocity 
x . The instantaneous kinematics is formulated as follows. 
 =x Jψ  (2) 

 † † TT T = =  ψ J x J v ω   (3) 
Where x  is a six-dimension twist vector, with the first three 
elements defining the linear velocity v and the last three for the 
angular velocity ω; J† is the Moore–Penrose pseudoinverse 
inverse matrix of J. 

The flowchart of the resolved motion rate control, from [7], 
is illustrated in Fig. 2. v and ω are determined by the current 
position error εp and orientation error εR. The expressions are 
as follows. 
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Where pt and Rt are the target position and orientation, 
respectively. pc and Rc are the current position and orientation. 
The operators of ( )1rotθ

− R  and ( )1
ˆrot−
r R  give the angle and 

the axis of a rotation matrix R. vxlim and ωxlim are preset 
constant scalars for maximal linear and angular velocities. 

Since ψ  can be obtained from (3), the configuration 
vector ψ is updated as in (6) for each iteration, where Δt is the 
time interval. 
 t= + Δψ ψ ψ  (6) 

The pose is then updated through forward kinematics. The 
iteration will continue until the εp and εR are less than the error 
thresholds (or the number of the iterations exceeds a preset 
value).  

 
Fig. 2 Flowchart of the resolved motion rate control. 

B. Dimension Reduction 
When a configuration variable violates its limit, it is 

usually bounded at the limit. However, this can be problematic 
and it is elaborated as follows. Eq. (2) can be rewritten as in Eq. 
(7), using Eq. (1). 

 
1

nTT T
i i

i

ψ
=

 = =  x v ω j   (7) 

During an inverse kinematics process, the configuration 
variable ψa is assumed to violate the corresponding limit ψalim 
in the next iteration (with a step of a tψ Δ ). If this configuration 
variable is simply bounded at the limit, the task velocity (a.k.a., 
end effector twist) is actually as follows: 

 lim
act act act

T TT T T T a a
a a t

ψ ψψ −    = = − −     Δ 
x v ω v ω j  (8) 

Generally, actx  and x  are not along the same direction. 
When the deviation is large enough, the inverse kinematics 
may start to diverge, resulting in increasing position or 
orientation errors. 

The method’s fundamental is to discard the ath 
configuration variable that reaches its own limit, and only use 
the rest joints to realize a partial inverse kinematics mapping 
from the task space to the configuration space. With the ath 
configuration variable fixed at the last iteration value, the 
continuum manipulator has its number of DoFs reduced.  
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The reduced Jacobian matrix J  is then obtained by 
removing the corresponding column vector ja: 
 [ ]1 1 1a a n− +=J j j j j    (9) 

The dimension of each column vector ji keeps unchanged. 
The instantaneous inverse kinematics is then to find a modified 
inverse kinematics mapping from the task space velocity to the 
reduced configuration space.  

When the number of the remaining configuration variables 
is less than the dimension of the desired task vector [vT ωT]T, 
the linear velocity and angular velocity may not be satisfied 
simultaneously. Linear velocity is set at a higher priority with 
respect to the angular velocity. Then a prioritized-Jacobian 
formulation is adopted to generate the configuration velocity 
with reduced dimension ψ  [16]. 

 † †† †[ ( ] () )= + − −v ω v v ω vψ J v J I J J ω J J v        (10) 

Where vJ  and ωJ  are from T TT =  v ωJ JJ   , representing the 
modified linear and angular velocity mapping, respectively.  

During each iteration, if there are more than one 
configuration variables reach their limits, the reduced 
configuration velocity can also be similarly derived via 
discarding these configuration variables at the same time.  

As the iterative inverse kinematics process continues, an 
updated configuration velocity may still lead to the remaining 
configuration variables violating their limits. Then the 
dimension of the dimension-reduced Jacobian needs to be 
further reduced, until all the calculated configuration variables 
are within their limits.  

In order to improve numerical stability caused by possible 
singularity, a singularity robust formulation was adopted for 
the pseudoinverse matrix as in Eq. (11). 

 ( ) 1† T T λ
−

= +J J JJ I  (11) 
Where λ is a constant damping coefficient. 

Besides the singularity robust formulation, a scaling-down 
procedure is integrated to avoid excessive configuration 
velocities. The scaling-down coefficient is to make sure the 
obtained configuration velocities are within the manipulator’s 
motion capability. The coefficient is obtained as in Eq. (12). 

 1 2 1 2

1 2 1 2

min , , ,1p p r r

p p r r

v v
s ω ω

ψ ψ ψ ψ
 
 =
 
 

 
   

, , ,  (12) 

Where 1pψ , 2pψ , … are the prismatic configuration velocities, 
and 1rψ , 2rψ , … are the revolute configuration velocities. vp1, 
vp2, …, ωr1, ωr2, … are the corresponding maximal 
configuration velocities. 

Thereafter, the dimension-reduced configuration vector ψ  
is updated as in (13). 
 s t= Δψ ψ+ ψ    (13) 

A flowchart for the implementation of the dimension 
reduction inverse kinematics in a single iteration is shown in 
Fig. 3, ensuring the configuration variables are all within their 

limits and constrain the modified configuration velocities 
within their feasible ranges. 

 
Fig. 3 Flowchart of the dimension-reduced method. 

III.  KINEMATICS 

The dimension reduced inverse kinematics was applied to 
a 2-segment continuum manipulator. The continuum segments 
are structurally similar and the well-accepted constant 
curvature bending assumption [2, 5] was used in the kinematics 
modeling. The nomenclature and coordinates are defined in 
Section III.A, while the forward kinematics of a single 
continuum segment and the 6-DoF manipulator (excluding the 
DoF of the gripper) are derived in the Section III.B and Section 
III.C, respectively. 

A. Nomenclature and Coordinates 
Without loss of generality, the proposed dimension 

reduced method is applied to a 2-segment continuum 
manipulator from a previous study [8], as shown in Fig. 4(b). 
The base stem has two DoFs: feeding along and around its 
axis. Each continuum segment possesses two DoFs. 

The coordinate attachments for the tth segment and the 
entire manipulator are shown in Fig. 4(a) and Fig. 4(b), 
respectively. The corresponding definitions are as follows, 
while the nomenclature is listed in Table I, referring to [8, 9]. 

 
Fig. 4 Nomenclature and coordinates of: (a) the tth continuum segment, and (b) 

the 6-DoF 2-continuum-segment manipulator [8]. 
 

Via (13), obtain modified 
configuration vector ψ  

Via (6), obtain 
configuration vector 
ψ of next iteration 

Obtain the dimension 
reduced Jacobian J  

Via (10), obtain modified 
configuration velocity ψ  

Yes 

No 

ψ
or 
ψ

If violate limits 

tθ

1ˆ ty

ˆ tby

2ˆˆ tte = xz

ˆ tex 2ˆ ty

ˆ tey

tδˆ tbx

1ˆ ˆ tbt = zx

1ˆ tz

2ˆ tz

tβ

tδ

2ˆ ey
2ˆ ex

2ˆ ez

2ˆ bx

2 1ˆ ˆ eb = zz

1ˆ ey

1ˆ ex

1ˆ bx 1ˆ by

1ˆ bz

ˆ wy

ˆ wz

Bending plane 

End ring 
Virtual central 

backbone 

Spacer ring

Backbone Base ring

2ˆ by

(a) (b) 

ˆ wx

305

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 10,2020 at 06:39:57 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I 
NOMENCLATURE USED IN THE KINEMATICS MODELING 

Symbol Definition 

t Index of the segments, t = 1, 2, …, n. 

Lt Length of the virtual central backbone of the tth segment. 

θt Bending angle of the tth segment in the bending plane. 

δt 
For continuum segment, the right-handed rotation angle from 
bending plane to x̂tb  about ẑtb . 

φ Right-handed rotation angle of the base stem. 
L0, Lr, 

Lg 
Length of the base stem, length of the rigid stem between the 
two continuum segments, and length of the gripper. 

ψt ψt = [θt δt]T is the configuration vector for tth segment. 

ψ0 ψ0 = [L0 φ]T is the configuration vector for the base stem. 

ψ ψ = [ψ0
T ψ1

T ψ2
T]T is the configuration vector for the entire 6-

DoF manipulator. 
aRb The rotation matrix of frame {b} with respect to {a}. 

apb 
Position of the origin of coordinate {b} or point b, with 
respect to the origin of coordinate {a}, with respect to 
coordinate {a}. 

Jt 
Jacobian matrix mapping from configuration space to task 
space for segment t. Jt = [Jtv

T Jtω
T]T, where Jtv and Jtω are the 

linear and angular velocity items, respectively. 
• Base Coordinate ˆ ˆ ˆ{ } { , , }x y ztb tb tbtb ≡  locates its origin at 
the center of the base ring. ẑtb  is perpendicular to the base ring 
and ˆ tbx  points to the first backbone. 
• Bending Plane Coordinate 1 1 1 1ˆ ˆ ˆ{ 1} { , , }t t tt ≡ x y z  is defined  
such that its XY plane is aligned with the bending plane of the 
t-th continuum segment with its origin coinciding with {tb}, 
and 1ˆ tx aligned with ˆ tbz . 
• Bending Plane Coordinate 2 2 2 2ˆ ˆ ˆ{ 2} { , , }t t tt ≡ x y z  is 
obtained from {t1} by a rotation about 1ˆ tz  with an angle tθ . 
And the origin of {t2} is attached at the center of the end disk 
and 2ˆ tx  is perpendicular to the end ring.  
• End Coordinate ˆ ˆ ˆ{ } { , , }x y zte te tete ≡  attaches its origin at 
the center of the end ring. ẑte  aligns with 2ˆ tx . And x̂te  is 
oriented to the first backbone. 
• World Coordinate ˆ ˆ ˆ{ } { , , }w w ww ≡ x y z , is defined with ˆ wz  
aligned with the base stem. Furthermore, {1b} is translated and 
rotated from {w} along and around the ˆ wz  with a length L0 and 
an angle φ, consequently. 

B. Forward Kinematics of the tth Segment 
The position vector from {tb} to {te} is as follows. 

 [ ]cos (1 cos ) sin (cos 1) sinp Ttb t
te t t t t t

t

L δ θ δ θ θ
θ

= − − (14) 

When θt approaches 0, Eq. (14) approaches tbpte = [0 0 Lt]T. 
The orientation mapping from {tb} to {te} is as follows. 

 1 2
1 2

tb tb t t
te t t te=R R R R  (15) 

Where ( ) ( ) ( )ˆ ˆ ˆ1 / 2 / 2tb
t δ π π= − − −z x zR R R R ; ( )ˆ δ−zR  is a 

simple rotation about ẑ  by an angle –δ. Furthermore, 
( )1

ˆ2
t

t θ= zR R , 2
1

t tb T
te t=R R . 

Jacobian matrix is derived as follows. 
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cos sin sin sin cos 1

T
t t

t
t t t t t

δ δ
δ θ δ θ θ

 =  − − 
ωJ  (17) 

When θt approaches 0, Jtv and Jtω can be derived according to 
L'Hôpital's rule. 

Moreover, for the rigid stem [ ]0 ˆ=vJ z 0 , [ ]0 ˆ=ωJ 0 z . 

C. Kinematics of the 6-DoF Continuum Manipulator 
The homogenous transformation from the World 

Coordinate to the tip of the gripper is expressed as follows. 
 1 1 2 2

1 1 2 2
w w b e b e

g b e b e g=T T T T T T  (18) 

Where :
1

w w
w g g

g
 

=  
 

R pT
0

. 

Besides the derivations in Section III.B, the rest orientation 
relationship between adjacent coordinates (or the tip of the 
gripper) can be expressed as ( )ˆ1

w
b ϕ= zR R , 1eR2b = 2eRg = I. 

The position relationship can be simply formulated as wp1b = [0 
0 L0], 1ep2b = [0 0 Lr], and 2epg = [0 0 Lg]. 

The Jacobian of the 6-DoF manipulator with respect to the 
tip of the gripper can be derived as follows, in the World 
Coordinate. 

 
1 1

0 1 1 1 1 2 2
1 1

0 1 1 1 1 2 2

w w b e
b b e b

m w w b e
b b e b

 
=  
 ω ω ω

T R T R R R TJ
J R J R R R J

 (19) 

Where T0 = J0v – (wR1b
1bpg)^J0ω, T1 = J1v – (1bR1e

1epg)^J1ω, and 
T2 = J2v – (2bR2e

2epg)^J2ω. The operator (p)^ gives the skew-
symmetric matrix of the vector p. 

The structural parameters and variable ranges are listed in 
Table II, which are kept consistent with the one in [8]. 

 
TABLE II 

STRUCTURAL PARAMETERS AND VARIABLE RANGES 
L1 (mm) Lr (mm) L2 (mm) Lg (mm) L0 (mm) θ1 (rad) θ2 (rad) 

40 20 60 20 [0,150]  [0,π/2] [0,2π/3] 

IV. NUMERICAL EXPERIMENTATIONS 

Two representative case studies are reported in this 
section, comparing the conventional resolved motion rate 
control method and the proposed dimension-reduced method.  

In both simulation case studies, both the initial and the 
target poses are within in the workspace of the 6-DoF 
continuum manipulator. The same pairs of the initial and the 
target configuration variables are used for both the 
conventional resolved motion rate control method and the 
dimension-reduced method to compare the different 
performances. 
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All the simulations were carried out in MATLAB 2016a 
on Windows 10 platform. In the task space, vxlim is set at 100 
mm/s, and ωxlim is set at π/2 rad/s. In the configuration space, 
the upper velocity limits for the prismatic and revolute 
configuration variables are set at 100 mm/s and π/2 rad/s, 
respectively. The time interval Δt is set at 1 ms. The error 
thresholds of position and orientation are 0.01 mm and 0.01 
rad, respectively.  

A. Case Study One 
The initial and target poses are represented in the form of 

configuration variables, listed as #1 in Table III. The poses can 
be seen in Fig. 5(c). 

 
Fig. 5 The convergence comparison of the two methods: (a) trajectories of 
each configuration variable; (b) trajectories of the position and orientation 

errors; (c.1) the pose achieved by the CRMRC (conventional resolved motion 
rate control) after 10 s; and (c.2) the converged pose by DRM (dimension 

reduced method).  
During the convergence of the conventional resolved 

motion rate control method, a large divergence occurs and the 
method fails to converge due to the fact that the configuration 
variable limits were encountered. However, properly using the 
movable DoFs that were not at their limits, the convergence 
continued in a proper way: the dimension reduced inverse 
kinematics method can quickly converge within the position 
and orientation error thresholds, with no deviation on the 

position errors throughout the entire process. Figure 5(a and b) 
shows the trajectories of each configuration variable and the 
position and orientation errors during the iterations, 
respectively. Figure 5(c.1) and Figure 5(c.2) illustrate the 
different poses obtained by the two methods. 

B. Case Study Two 
In the second case study, even though the initial pose is 

quite close to the target pose, the conventional resolved motion 
rate control method still fails to converge due to the 
configuration variable limits. The initial and the target 
configuration variables are listed as #2 in Table III, and the 
inverse kinematics process and the corresponding poses are 
shown in Fig. 6. 

TABLE III 
INITIAL AND TARGET CONFIGURATION VARIABLES 

 L0 (mm) φ (rad) θ1 (rad) δ1 (rad) θ2 (rad) δ2 (rad)

Initial value #1 62.7827 0.4484 1.4036 1.9846 2.0943 -1.0885

Target value #1 74.0130 0.0147 1.0412 1.4377 2.0389 1.7679 

Initial value #2 29.0030 -1.0068 1.3054 -1.3332 2.0943 -1.5215

Target value #2 41.8520 -1.0461 1.5276 -1.3863 2.0940 -1.5534
 

 
Fig. 6 The convergence comparison of the two methods: (a) trajectories of each 
configuration variable; (b) trajectories of the position and orientation errors; and 

(c) final poses obtained by CRMRC and DRM, respectively. 
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This simulation experiment further verifies the 
effectiveness of the proposed dimension reduced method in 
significantly avoiding positional divergence compared with the 
conventional method. It brings better performance around the 
configuration variable limits. 

V. CONCLUSION AND FUTURE WORK 

Addressing the deficiency when the conventional resolved 
motion rate control method handles the configuration variable 
limits, this paper introduces a dimension-reduced method to 
provide numerical stability. The proposed method essentially 
uses the non-saturated configuration variables to provide a 
least-square motion solution for a desired motion twist. Since it 
is highly possible that the desired task twist cannot be satisfied 
completely, a prioritized formulation is adopted to set the 
desired linear velocity at a higher priority with respect to the 
angular velocity. To avoid excessive configuration velocities, a 
scaling-down modification is also introduced. 

The proposed method can help maintain numerical 
stability for the Jacobian-based instantaneous inverse 
kinematics around configuration variable limits. Even around 
the configuration variable limits, the iterative process can still 
continue without bringing a divergence. 

Numerical experiments were conducted to demonstrate 
that the proposed dimension-reduced inverse kinematics 
method appears to have significant strengths compared to the 
conventional Jacobian-based method.  

Extensive experiments on these advantages shall be 
verified in the near future, in order to fully evaluate the 
effectiveness of the proposed method.  
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