
 

  

Abstract—Continuum robots and manipulators attracted lots 
of attention in the past decade owing to their dexterity, intrinsic 
compliance and design compactness. A widely accepted 
approach in formulating the kinematics of a multi-segment 
continuum robot is to assume their shapes as serially connected 
arcs with constant curvature at different values for each 
segment. In spite of the simplification in kinematics, complete 
analytic solutions of the inverse kinematics (IK) problem of such 
a multi-segment continuum robot may not exist. Instead, a 
generalized inverse Jacobian method is often used for the IK 
problem. This Jacobian-based method is computationally 
demanding and sometimes fails to solve the IK problem. This 
paper proposes a heuristic approach to iteratively solve the IK 
problem of a continuum robot. The algorithm implementation, 
which is straightforward, is elaborated. Several simulation case 
studies show that the algorithm is highly effective in computing 
the IK solutions for continuum robots with different topologies, 
indicating the effectiveness of this algorithm. 

I. INTRODUCTION 
ONTINUUM robots, a term proposed in [1], attracted 
lots of attention in the past decade because of their 

advantages in terms of dexterity, intrinsic compliance and 
design compactness. Benefited by their useful features, 
continuum robots have been broadly employed for a variety 
of applications in confined spaces [2, 3]. 

Kinematics of continuum robots is often formulated by 
characterizing their shapes as smooth curves. A common 
approach is to assume the shapes as serially connected arcs 
with constant curvature at different values for each segment, 
while formulating the kinematics of a multi-segment 
continuum robot [4]. This approach, which is widely accepted, 
was verified analytically and experimentally [5-7].  

Under the constant curvature assumption, each segment is 
usually characterized by three configuration variables (e.g., 
two for bending angles and one for segment length). The use 
of configuration space to bridge the Cartesian task space and 
the actuation space generalizes the kinematics model and 
makes the model independent of particular actuation schemes 
(e.g., the uses of cables, elastic rods, shape memory alloys, 
 

Manuscript received on Mar 15th, 2018. This work was supported in part 
by the National Natural Science Foundation of China (Grant No. 51435010, 
Grant No. 51722507 and Grant No. 91648103), and in part by the National 
Key R&D Program of China (Grant No. 2017YFC0110800). 

Weihao Zhang and Kai Xu are with School of Mechanical Engineering, 
Shanghai Jiao Tong University, Shanghai, China (asterisk indicates the 
corresponding author, phone: +86-21-34206547; e-mails: zwh0813@ 
sjtu.edu.cn and k.xu@sjtu.edu.cn).  

Zhixiong Yang and Tianlai Dong are with the RII Lab (Lab of Robotics 
Innovation and Intervention), UM-SJTU Joint Institute, Shanghai Jiao Tong 
University, Shanghai, China (e-mails: yangzhixiong@sjtu.edu.cn and 
5123709073@sjtu.edu.cn). 

hydraulic or pneumatic pressures, etc.).  
When a few segments are serially connected with each 

other or with rigid-linked kinematic chains, the forward 
kinematics formulation is straightforward under this constant 
curvature assumption. This has enabled plenty of applications 
of continuum robots in healthcare and industries (e.g., the 
ones in [8-16]). 

More sophisticated approaches to formulate the kinematics 
of continuum robots have also been attempted, for example, 
via the use of Hamilton’s principle [17], elliptic integrals [7], 
Cosserat rod theory [18], virtual power [19], etc. However, 
applications of these methods are limited for serial continuum 
robots due to the difficulties in formulations and the 
challenges in real-time computation. 

Just like a generic serial manipulator whose inverse 
kinematics (IK) problem usually does not have closed-form 
solutions (unless specifically designed), the IK problem of a 
continuum robot only has analytical solutions when the robots 
have particular forms (e.g., a variable curvature arc length 
followed by a fixed curvature arc length in [20]) or have 
unconstrained structural parameters (e.g., arbitrary segment 
lengths while neglecting the orientation of the robot’s end 
effector in [21]).  

In most cases, the IK problems of continuum robots are 
solved numerically, employing a generalized inverse 
Jacobian method (e.g., in [14, 22-25]). This generalized 
inverse Jacobian method, which is similar to the resolved 
motion rate control in [26], can also be constructed to provide 
singularity robustness and kinematic redundancy resolutions 
(e.g., enable self-motions, avoid joint limits, etc.).  

The generalized inverse Jacobian method for the IK 
problem is computationally demanding. What’s more, it takes 
even longer for the generalized inverse Jacobian method to 
converge to a solution when the target pose is singular: the 
singularity-robust formulation often adds small non-zero 
errors to maintain numerical stability but delays the 
convergence.   

Sometimes, this inverse Jacobian method fails to find an IK 
solution that does exist, when the pose to be solved is very 
different from the robot’s current pose. This may be due to the 
fact that the inverse Jacobian leads the iterations towards a 
local minimum, instead of finding the IK solution. Changing 
initial guesses for multiple times is often needed to find the IK 
solution. 

Recently, a new heuristic iterative approach, the Forward 
And Backward Reaching Inverse Kinematics (FABRIK) 
method, which is based on conformal geometric algebra, has 
been proposed [27]. The FABRIK method finds the joints’ 
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position in a geometric way rather than computing the joint 
values. This heuristic approach is proven convergent, 
efficient and versatile in various scenarios without suffering 
from singularity problems [28].  

While the original FABRIK method only handles the IK 
problem of rigid-linked robots, this paper proposes the 
FABRIKc method, by reformulating the FABRIK procedure 
for the IK problems of continuum robots. Each segment of the 
continuum robot will be replaced by two virtual rigid links 
and a virtual joint. The process of replacing an arc segment 
with rigid links and joints in this paper is different from that in 
[21] where each segment was replaced by only one rigid link 
connecting the base and the tip of the segment. What’s more, 
the FABRIKc method can solve the IK problems with 
prescribed segment lengths and end effector orientations, 
whereas these solutions were not guaranteed by the method in 
[21].    

This paper is organized as follows. Section II summarizes 
the kinematics of a single segment and explains how to 
replace the segment with two virtual links and one virtual 
joint. The FABRIKc method is elaborated in Section III, 
while several simulation case studies for different continuum 
robots are detailed in Section IV to demonstrate the efficacy 
of this method. Section V summarizes the conclusions and the 
future work. 

II. MODELING OF A SINGLE SEGMENT  
Modeling of a single segment only concerns the mapping 

between the configuration space and the Cartesian workspace, 
in order to make the derivation actuation independent. 
Following the constant curvature assumption, kinematics of a 
single segment (the tth segment) is summarized in this section, 
referring to the details in [29].  

The nomenclature is listed in Table I, while the assigned 
coordinate systems are defined as follows, referring to Fig. 1. 
 Base coordinate ˆ ˆ ˆ{ } { , , }tb tb tbtb ≡ x y z  locates its origin at 

the center of the base cross section with ˆ tbz  perpendicular 
to the base cross section. 

 Bending plane coordinate 1 ˆ ˆ ˆ{ } { , , }t1 t1 t1t1 ≡ x y z  shares its 
origin with { }tb  and has the segment bending in its XY 
plane. 

 Bending plane coordinate 2 ˆ ˆ ˆ{ } { , , }t2 t2 t2t2 ≡ x y z  is 
obtained by rotating { }t1 about ˆ t1z for an angle θt so that 
ˆ t 2x is perpendicular to the end cross section. The origin of 
{ }t2  locates at the center of the end cross section. 

 End coordinate ˆ ˆ ˆ{ } { , , }te te tete ≡ x y z  locates its origin at the 
center of the end cross section. ˆ tez  aligns with 2ˆ tx while 
ˆ tex  is obtained by rotating ˆ t 2y about ˆ tez  for  an angle δt. 

TABLE I 
NOMENCLATURE USED IN KINEMATICS MODELING AND ALGORITHM  

Symbol Representation 
n Number of the segments 
t Index of the segments, t = 1,2,…,n . t = 1 for the most proximal 

segment and t = n for the most distal segment. 
Lt Length of the tth segment 

θt 
Bending angle of the tth segment in the bending plane; θt  = 0 
indicates that the tth segment is straight. 

δt The right-handed rotation angle from ˆ
t1y  about ˆ

tbz  to ˆ
tbx  

lt Length of the virtual link 1 and 2    

ptb, pte 
Center position of the tth segment’s base cross section and end 
cross section in the world coordinate 

tbpte Center position of the tth segment’s end cross section in { }tb  

Rtb, Rte
 

The coordinate transformation matrix mapping from { }tb  and 
{ }te  to the world coordinate, respectively. 

tbRte
 The coordinate transformation matrix relating { }te  and { }tb  

p* The target position in the world coordinate 
ˆ ∗x ˆ∗z  The target orientation in the world coordinate 

k, kmax 
The iteration index and the maximal allowable iteration 
number 

 

 
Fig. 1. Nomenclature and coordinates of the tth segment 

With the nomenclature and the coordinates defined, the 
direct kinematics of a single segment can be formulated as 
follows referring to [29]. The center of the end cross section 
of the tth segment is in (1): 
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To implement the proposed FABRIKc algorithm in Section 
III, the shape and kinematics of a single segment shall be 
represented by a virtual joint and two virtual links as shown in 
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Fig. 1. The virtual joint (namely joint-t) is located at the 
intersection of the normals of the segment’s base cross 
section and end cross section. The two virtual links (link-t1 
and link-t2) connect the joint-t and the origins of the base 
cross section and the end cross section, respectively. The 
link-t1 and link-t2 are in the directions of ˆ tbz  and ˆ tez , 
correspondingly. 

It should be noted that when Lt is constant for a specific 
segment, the virtual links’ lengths lt is not constant and can be 
obtained as follows: 

 tan
2

t t
t

t

L
l

θ
θ

 =  
 

 (3) 

Where 2t tl L=  when 0tθ = . 
Then the position of the joint-t can be written as in (4) or 

(5). 
 ˆtj tb t tbl= +p p z  (4) 
 ˆtj te t tel= −p p z   (5) 

For a single segment, if the position of the center of the end 
cross section 

Ttb tb tb tb
te te te tex y z =  p  is known, the 

configuration variable δt and θt can be obtained from (6) and 
(7): 
 atan 2( , )tb tb

t te tey xδ = −   (6) 
Where atan2(y, x) is the right-handed angle between the 
x-axis and a ray passing the origin and the point (x, y). δt is 
singular and can be any value when tb tb

te tex y=  0= . 
 ˆ ˆarccos( )t tb teθ = ⋅z z  (7) 

With δt and θt obtained, Lt can be calculated from (1). 
In the FABRIKc algorithm presented in Section III, the 

information about the virtual joints and the virtual links of all 
the segments in a continuum robot can be rapidly computed 
by finding the virtual joints’ locations ptj. 

III. FABRIKC ALGORITHM 
In this section, the FABRIKc method for solving the IK 

problem of continuum robots is presented, by re-formulating 
the FABRIK method for the IK problem of articulated robots.  

The FABRIKc algorithm updates the robot’s configuration 
variables through two phases in each iteration: the forward 
reaching phase and the backward reaching phase.  

As shown in Fig. 2, The FABRIKc algorithm starts with 
the target position *p  and orientation *ẑ  of the robot’s end 
effector as well as its current pose (Lt, θt and δt, t = 1, 2, ⋯, n). 
Then ptj and lt for each segment are initialized using (3) and (4) 
for the current robot pose. The residual positioning error e is 
calculated from (8). Only the positioning error is concerned 
because the FABRIKc algorithm inherently guarantees the 
orientation of the robot’s end effector. 
 *

nee = −p p  (8) 
Where pne is the center position of the end cross section of the 
nth segment. 

When the error e is bigger than a threshold ε and the 

iteration index k is smaller than the maximal allowable 
iteration number kmax, the FABRIKc algorithm goes through a 
two-phase-iteration process. 

 
Fig. 2. Flowchart of the FABRIKc algorithm  

In the forward reaching phase, the end cross section of the 
robot’s nth segment is firstly moved to the target position 
with aligned orientation by setting *

ne =p p  and *ˆ ˆne =z z . 
Then the position pnj of the joint-n can be obtained using (5). 
Next, the normal of the base cross section of the robot’s nth 
segment can be obtained as in (9). Subsequently, θn, ln and pnj 
should be updated one by one using (7), (3) and (5) 
respectively. 
 ( 1) ( 1)ˆ ( )nb nj n j nj n j− −= − −z p p p p  (9) 

The handling of the nth segment above should be repeated 
for from the (n-1)th segment to the 1st segment. For example, 
the end cross section of the robot’s tth segment should be 
moved to the base cross section of the (t+1)th segment by 
setting ( 1) ( 1) ( 1) ( 1)ˆte t b t j t t bl+ + + += = −p p p z  and ( 1)ˆ ˆte t b+=z z . 
Then the position ptj of the joint-t can be obtained using (5). 
Next, the normal of the base cross section of the robot’s tth 
segment can be obtained as in (10). Subsequently, θt, lt and ptj 
should be updated one by one using (7), (3) and (5) 
respectively. The only special treatment for the 1st segment is 
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to let [ ]1ˆ 0 0 1 T
b =z  before updating θ1 and l1 using (7) and 

(3). 
 ( 1) ( 1)ˆ ( )tb tj t j tj t j− −= − −z p p p p  (10) 

In the backward reaching phase, the first step is to move the 
base cross section of the robot’s 1st segment to the origin of 
the world coordinate (a.k.a, {1 }b ) by setting p1b = [0 0 0]T. 
Then p1j can be obtained using (4). Next, the normal of the 
end cross section of the robot’s 1st segment can be obtained 
as in (11). Subsequently, θ1, l1 and p1j should be updated one 
by one using (7), (3) and (4) respectively. 
 ˆ ( )1e 2j 1j 2j 1j= − −z p p p p  (11) 

The handling of the 1st segment above should be repeated 
for from the 2nd segment to the nth segment. For example, the 
base cross section of the robot’s tth segment should be moved 
to the end cross section of the (t−1)th segment by setting 

( 1) ( ) ( 1) ( 1)ˆtb t e t 1 j t t el− − − −== +p p p z  and ( 1)ˆ ˆtb t e−=z z . Then the 
position ptj of the joint-t can be obtained using (4). Next, the 
normal of the end cross section of the robot’s tth segment can 
be obtained as in (12). Subsequently, θt, lt and ptj should be 
updated one by one using (7), (3) and (4) respectively. The 
only special treatment for the nth segment is to let *ˆ ˆne =z z  
before updating θ1, l1 and pnj sing (7), (3) and (4) respectively. 
 ( ) ( )ˆ ( )te t+1 j tj t+1 j tj= − −z p p p p  (12) 

Lastly, pne is updated from (5) using pnj, ln and ˆ nez . With 
the positioning error e updated using (8), the iteration will 
terminate or repeat.  

When the iteration terminates with e < ε and k < kmax, δ1 and 
R1e are first calculated using (6) and (2) respectively, as 
indicated in Fig. 2. Then for from the 2nd segment to the nth 
segment, Rtb is firstly calculated as R(t-1)e. Next, tbpte is 
calculated using (13), while δt and tbRte are obtained using (6) 
and (2) respectively. Please note, all the θt values have been 
obtained during the two-phase iteration. 
 ( 1)( )tb T

te tb te t e−= −p R p p   (13) 
With all the above variables obtained, the IK problem of 

the continuum robot is solved.  
In order to further demonstrate the implementation of the 

FABRIKc algorithm, the forward and the backward reaching 
phases are depicted in Fig. 3 on a 3-segment continuum robot 
with constant segment lengths. Each segment possesses two 
bending DoFs (Degrees of Freedom). 

The initial and target poses of the 3-segment continuum 
robot is shown in Fig. 3(a).  

In the forward reaching phase, the end cross section of the 
3rd segment is moved to the target position ( *

3e =p p ) with 

the orientation aligned. The line from 3ep  along *ˆ−z  with the 
length of l3 gives the position of the joint-3 (p3j). Connecting 
p3j and p2j gives a line to determine θ3 as in Fig. 3(b). Then l3 
shall be updated using the new θ3 as in Fig. 3(c). This gives an 
updated value for p3j as well as p3b. Next, the end cross 
section of the 2nd segment is moved to the base cross section 

of the 3rd segment. The line from 2ep  along 2ˆ e−z  with the 
length of l2 gives the position of the joint-2 (p2j). Connecting 
p2j and p1j gives a line to determine θ2 as in Fig. 3(d). Then l2 
shall be updated using the new θ2 as in Fig. 3(e). This gives an 
updated value for p2j as well as p2b. After similar treatment for 
the 1st segment, the center of the base cross section will move 
away from the origin, as in Fig. 3(f). As the base of the 1st 
segment shall not move, the backward reaching phase is 
necessary. As shown in Fig. 3(g), the base cross section of the 
1st segment should be moved to the origin. Then the 2nd and 
the 3rd segments shall be moved, while updating θ2, l2, p2j, θ3, 
l3 and p3j subsequently. A full iteration completes after the 
backward reaching phase is finished.  

 
Fig. 3. An example of the two-phase iteration of the proposed FABRIKc 

algorithm on a 3-segment continuum robot: (a) the initial and the target 
poses, (b) update θ3, (c) update the joint-3 and l3, (d ~ f) continue the 
algorithm for the rest segments, (g) move the base cross section of the 1st 
segment to the origin, (h and i) move the 2nd and the 3rd segments while 
updating θ2, l2, p2j, θ3, l3 and p3j subsequently. 

As a heuristic algorithm, the proposed FABRIKc algorithm 
possesses quite a few advantages, besides its straightforward 
implementation. Representing the segments using the virtual 
joints and the virtual links avoids the calculation of the 
Jacobian matrix and its inverse. The singularity concern is 
hence eased since the Jacobian matrix is not involved. The 
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forward and the backward reaching phases dramatically 
reduced required computational load. By updating lt using (3), 
the segment lengths (Lt) can be easily controlled (setting 
constant values or value ranges).  

IV. SIMULATION CASE STUDIES 
Two simulation case studies are presented in this section to 

demonstrate the effectiveness of the proposed FABRIKc 
algorithm. 

The first simulation case study is for a three-segment 
continuum robot. Each segment has a constant length and 
possesses two bending DoFs. A robot with the same structural 
topology was implemented for palpation tasks in [30]. The 
second simulation case study is for a hybrid continuum robot 
comprised of two constant-length continuum segments and 
two straight rigid segments. A prismatic feeding joint 
translates the entire robot. This case study shows that the 
proposed FABRIKc algorithm can also handle rigid elements. 

To demonstrate the efficiency of the FABRIKc algorithm, 
the inverse Jacobian method was also used to deal with the 
same tasks for comparison. All the simulations were carried 
out with MATLAB codes on a 3.5-GHz Core i5 processor on 
a Window 10 platform. 

A. Case #1 
The proposed FABRIKc algorithm was firstly tested on the 

3-segment continuum robot with the segments lengths 
defined in Table II. 

TABLE II 
STRUCTURAL PARAMETERS OF THE 3-SEGMENT CONTINUUM ROBOT 

L1=50 mm L2=40 mm L3=30 mm 
 

The simulation drove the continuum robot from an initial 
configuration/pose to a target configuration/pose. The 
simulation results for two different choices of the initial 
configurations solved by the inverse Jacobian method and the 
FABRIKc algorithm are plotted in Fig. 4 and Fig. 5, 
respectively.  

It can be seen from Fig. 4 that the inverse Jacobian method 
can drive the robot towards a target pose. But there do exist 
scenarios that the inverse Jacobian method can lead to a 
trapped configuration of the robot, for example in Fig. 4(b). 
When the robot is trapped, the position and the orientation 
errors will not continue to decrease, as shown in Fig. (d). The 
apparent reason for this trapping is that the θ1 and θ2 angles 
reached their motion limits that are 90°. The fundamental 
reason might be that the desired motion twist, which is 
mapped by the inverse Jacobian, generates the configuration 
variable rates with opposite directions. This wrongly pushes 
the configuration variables towards their range limits and 
eventually traps the inverse Jacobian method. 

On the other hand, the FABRIKc algorithm so far shows 
good versatility and robustness. Both initial configurations in 
Fig. 5, which are identical to those in Fig. 4, can reach the 
target configurations. Even only after the first iteration, the 
robot has reached the poses very close to the target poses. The 
poses with the virtual joints and the virtual links are shown in 

Fig. 5(a and b). The FABRIKc algorithm terminates after 12 
iterations when the error is less than 0.001 mm. It can be seen 
from Fig. 5(c and d) that the positioning errors were reduced 
to around 1 mm even only after the first iteration.  

 
Fig. 4. Inverse Jacobian method for driving the continuum robot from the 

initial configurations to the target configurations: (a and b) robot poses, (c 
and d) position errors and angular errors of the end effector, and (e and f) 
configuration variables during the iterations 

 

 
Fig. 5. The FABRIKc algorithm for the IK problem: (a and b) initial  

configurations and the configurations after the first iteration, (c and d) 
position errors, and (e and f) configuration variables during the iterations 

B. Case #2 
The proposed FABRIKc algorithm was implemented on a 

two-segment continuum robot as shown in Fig. 6(a). Within 
this robot, each of the two continuum segments possesses two 
bending DoFs. A length varying rigid segment can translates 
the entire robot, while the 1st rigid segment with a fixed 
length connects the 1st and the 2nd continuum segments. The 
structural parameters of the hybrid continuum robot are listed 
in Table III. This case study indicates that the FABRIKc 
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algorithm can also handle rigid elements.  
While handling the rigid segment that connects the two 

continuum segments, trivial modifications were introduced: 
translating the rigid segments to append the base or end cross 
sections of the previous or the last continuum segments.  

While handling the prismatic feeding joint, the joint is 
represented as a length-varying rigid segment. Then after the 
forward reaching phase, the base cross section of the feeding 
segment was moved away from the origin, as shown in Fig. 
7(a). Since the length-varying rigid segment’s length is 
changeable, the error component along the Z-axis can be 
corrected via varying the length as shown in Fig. 7(b). Then 
the segment is translated back to the origin as shown in Fig. 
7(c) and the back reaching phase continues. 

The simulation is about moving the end effector to point to 
the inspection target point from different orientations. First, 
the desired positions for the end effector were picked on a 
spherical surface. The radius of the spherical surface was the 
desired viewing distance. The orientation of the end effector 
was then determined by pointing to the inspection target. This 
simulation mimics an endoscopic inspection task. The results 
are illustrated in Fig. 6(b). The iterations and time for the 
simulations are presented in Table IV. The inverse Jacobian 
method was also used to solve the problem and the results are 
listed in Table IV for comparison. It can be clearly seen that 
the FABRIKc algorithm is very efficient: about 10 times 
faster than the inverse Jacobian method. 

TABLE III 
SEGMENTS LENGTHS OF THE HYBRID CONTINUUM ROBOT  

Lc1 = 40 mm Lfeeding ∈ [0 150] mm Lc2 = 60 mm Lr1 = Lr2 = 20 mm
 

 
Fig. 6. (a) The hybrid continuum robot; (b) IK solutions, for possibly 

inspecting a target from different view 
 

 
Fig. 7. (a) The length-varying rigid segment is moved away from the 

origin; (b) change the segment’s length, and (c) translate the length-varying 
rigid segment back to the origin 

TABLE IV 
SIMULATIONS RESULTS OF THE HYBRID CONTINUUM ROBOT 

Case  Average 
iterations 

Average time 
(second) 

Max. 
iterations 

Max. time 
(second) 

#2 FABRIKc 44.5556 0.0222 112 0.0826 
Jacobian 1604.8 0.1926 1722 0.2177 

V. CONCLUSIONS AND FUTURE WORK 
This paper proposes the FABRIKc algorithm, an iterative 

IK solver for continuum robots, reformulating the FABRIK 
algorithm that was originally designed for articulated robots. 

Implementation of the FABRIKc algorithm is elaborated, 
including the representation of the continuum segments using 
virtual joints and virtual links, as well as the development of 
the forward and the backward reaching phases.  

The FABRIKc algorithm is a heuristic iterative process 
where the forward and backward reaching phases 
alternatingly change the robot configurations and quickly 
return the IK solutions. It can be potentially used for real-time 
control and motion planning since it has low computational 
cost.  

The FABRIKc algorithm was tested on two continuum 
robots with different structures. The results suggest that the 
FABRIKc algorithm is about ten times faster than the inverse 
Jacobian method and can handle the scenarios where the IK 
problem fails to be solved by the inverse Jacobian method. 

Future investigation on the FABRIKc algorithm include 
several aspects, including i) active incorporating joint limits 
(the joint limits are now checked after the solution was 
obtained), ii) formulating for obstacle avoidance and 
self-motions, and iii) obtaining complete IK solutions for a 
continuum robot.  
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